Metamath Proof Explorer


Theorem dmtrclfv

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion dmtrclfv R V dom t+ R = dom R

Proof

Step Hyp Ref Expression
1 trclfvub R V t+ R R dom R × ran R
2 dmss t+ R R dom R × ran R dom t+ R dom R dom R × ran R
3 1 2 syl R V dom t+ R dom R dom R × ran R
4 dmun dom R dom R × ran R = dom R dom dom R × ran R
5 dm0rn0 dom R = ran R =
6 xpeq1 dom R = dom R × ran R = × ran R
7 0xp × ran R =
8 6 7 eqtrdi dom R = dom R × ran R =
9 8 dmeqd dom R = dom dom R × ran R = dom
10 dm0 dom =
11 10 a1i dom R = dom =
12 eqcom dom R = = dom R
13 12 biimpi dom R = = dom R
14 9 11 13 3eqtrd dom R = dom dom R × ran R = dom R
15 5 14 sylbir ran R = dom dom R × ran R = dom R
16 dmxp ran R dom dom R × ran R = dom R
17 15 16 pm2.61ine dom dom R × ran R = dom R
18 17 uneq2i dom R dom dom R × ran R = dom R dom R
19 unidm dom R dom R = dom R
20 4 18 19 3eqtri dom R dom R × ran R = dom R
21 3 20 sseqtrdi R V dom t+ R dom R
22 trclfvlb R V R t+ R
23 dmss R t+ R dom R dom t+ R
24 22 23 syl R V dom R dom t+ R
25 21 24 eqssd R V dom t+ R = dom R