Metamath Proof Explorer


Theorem dmtrclfv

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion dmtrclfv ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 )

Proof

Step Hyp Ref Expression
1 trclfvub ( 𝑅𝑉 → ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) )
2 dmss ( ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) → dom ( t+ ‘ 𝑅 ) ⊆ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) )
3 1 2 syl ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) ⊆ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) )
4 dmun dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 ∪ dom ( dom 𝑅 × ran 𝑅 ) )
5 dm0rn0 ( dom 𝑅 = ∅ ↔ ran 𝑅 = ∅ )
6 xpeq1 ( dom 𝑅 = ∅ → ( dom 𝑅 × ran 𝑅 ) = ( ∅ × ran 𝑅 ) )
7 0xp ( ∅ × ran 𝑅 ) = ∅
8 6 7 eqtrdi ( dom 𝑅 = ∅ → ( dom 𝑅 × ran 𝑅 ) = ∅ )
9 8 dmeqd ( dom 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom ∅ )
10 dm0 dom ∅ = ∅
11 10 a1i ( dom 𝑅 = ∅ → dom ∅ = ∅ )
12 eqcom ( dom 𝑅 = ∅ ↔ ∅ = dom 𝑅 )
13 12 biimpi ( dom 𝑅 = ∅ → ∅ = dom 𝑅 )
14 9 11 13 3eqtrd ( dom 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 )
15 5 14 sylbir ( ran 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 )
16 dmxp ( ran 𝑅 ≠ ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 )
17 15 16 pm2.61ine dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅
18 17 uneq2i ( dom 𝑅 ∪ dom ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 ∪ dom 𝑅 )
19 unidm ( dom 𝑅 ∪ dom 𝑅 ) = dom 𝑅
20 4 18 19 3eqtri dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = dom 𝑅
21 3 20 sseqtrdi ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) ⊆ dom 𝑅 )
22 trclfvlb ( 𝑅𝑉𝑅 ⊆ ( t+ ‘ 𝑅 ) )
23 dmss ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) → dom 𝑅 ⊆ dom ( t+ ‘ 𝑅 ) )
24 22 23 syl ( 𝑅𝑉 → dom 𝑅 ⊆ dom ( t+ ‘ 𝑅 ) )
25 21 24 eqssd ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 )