Step |
Hyp |
Ref |
Expression |
1 |
|
trclfvub |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |
2 |
|
dmss |
⊢ ( ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) → dom ( t+ ‘ 𝑅 ) ⊆ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ 𝑅 ) ⊆ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |
4 |
|
dmun |
⊢ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 ∪ dom ( dom 𝑅 × ran 𝑅 ) ) |
5 |
|
dm0rn0 |
⊢ ( dom 𝑅 = ∅ ↔ ran 𝑅 = ∅ ) |
6 |
|
xpeq1 |
⊢ ( dom 𝑅 = ∅ → ( dom 𝑅 × ran 𝑅 ) = ( ∅ × ran 𝑅 ) ) |
7 |
|
0xp |
⊢ ( ∅ × ran 𝑅 ) = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( dom 𝑅 = ∅ → ( dom 𝑅 × ran 𝑅 ) = ∅ ) |
9 |
8
|
dmeqd |
⊢ ( dom 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom ∅ ) |
10 |
|
dm0 |
⊢ dom ∅ = ∅ |
11 |
10
|
a1i |
⊢ ( dom 𝑅 = ∅ → dom ∅ = ∅ ) |
12 |
|
eqcom |
⊢ ( dom 𝑅 = ∅ ↔ ∅ = dom 𝑅 ) |
13 |
12
|
biimpi |
⊢ ( dom 𝑅 = ∅ → ∅ = dom 𝑅 ) |
14 |
9 11 13
|
3eqtrd |
⊢ ( dom 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 ) |
15 |
5 14
|
sylbir |
⊢ ( ran 𝑅 = ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 ) |
16 |
|
dmxp |
⊢ ( ran 𝑅 ≠ ∅ → dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 ) |
17 |
15 16
|
pm2.61ine |
⊢ dom ( dom 𝑅 × ran 𝑅 ) = dom 𝑅 |
18 |
17
|
uneq2i |
⊢ ( dom 𝑅 ∪ dom ( dom 𝑅 × ran 𝑅 ) ) = ( dom 𝑅 ∪ dom 𝑅 ) |
19 |
|
unidm |
⊢ ( dom 𝑅 ∪ dom 𝑅 ) = dom 𝑅 |
20 |
4 18 19
|
3eqtri |
⊢ dom ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) = dom 𝑅 |
21 |
3 20
|
sseqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ 𝑅 ) ⊆ dom 𝑅 ) |
22 |
|
trclfvlb |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ⊆ ( t+ ‘ 𝑅 ) ) |
23 |
|
dmss |
⊢ ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) → dom 𝑅 ⊆ dom ( t+ ‘ 𝑅 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ⊆ dom ( t+ ‘ 𝑅 ) ) |
25 |
21 24
|
eqssd |
⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 ) |