Metamath Proof Explorer


Theorem 0xp

Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of Monk1 p. 37. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion 0xp ( ∅ × 𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑥 ∈ ∅
2 simprl ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) ) → 𝑥 ∈ ∅ )
3 1 2 mto ¬ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) )
4 3 nex ¬ ∃ 𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) )
5 4 nex ¬ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) )
6 elxp ( 𝑧 ∈ ( ∅ × 𝐴 ) ↔ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) ) )
7 5 6 mtbir ¬ 𝑧 ∈ ( ∅ × 𝐴 )
8 7 nel0 ( ∅ × 𝐴 ) = ∅