Metamath Proof Explorer


Theorem reltrclfv

Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020)

Ref Expression
Assertion reltrclfv RVRelRRelt+R

Proof

Step Hyp Ref Expression
1 trclfvub RVt+RRdomR×ranR
2 1 adantr RVRelRt+RRdomR×ranR
3 simpr RVRelRRelR
4 relssdmrn RelRRdomR×ranR
5 ssequn1 RdomR×ranRRdomR×ranR=domR×ranR
6 5 biimpi RdomR×ranRRdomR×ranR=domR×ranR
7 3 4 6 3syl RVRelRRdomR×ranR=domR×ranR
8 2 7 sseqtrd RVRelRt+RdomR×ranR
9 xpss domR×ranRV×V
10 8 9 sstrdi RVRelRt+RV×V
11 df-rel Relt+Rt+RV×V
12 10 11 sylibr RVRelRRelt+R