| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cotr | ⊢ ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ↔  ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 2 |  | sp | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 )  →  ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 3 | 2 | 19.21bbi | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 )  →  ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 4 | 1 3 | sylbi | ⊢ ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  →  ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 6 | 5 | a2i | ⊢ ( ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 7 | 6 | alimi | ⊢ ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 8 | 7 | ax-gen | ⊢ ∀ 𝑐 ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 9 | 8 | ax-gen | ⊢ ∀ 𝑏 ∀ 𝑐 ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 10 | 9 | ax-gen | ⊢ ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) | 
						
							| 11 |  | brtrclfv | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ↔  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 ) ) ) | 
						
							| 12 |  | brtrclfv | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑏 ( t+ ‘ 𝑅 ) 𝑐  ↔  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑅  ∈  𝑉  →  ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  ↔  ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) ) | 
						
							| 14 |  | jcab | ⊢ ( ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  ↔  ( ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) | 
						
							| 15 | 14 | albii | ⊢ ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  ↔  ∀ 𝑟 ( ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) | 
						
							| 16 |  | 19.26 | ⊢ ( ∀ 𝑟 ( ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) )  ↔  ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) | 
						
							| 17 | 15 16 | bitri | ⊢ ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  ↔  ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑏 )  ∧  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑏 𝑟 𝑐 ) ) ) | 
						
							| 18 | 13 17 | bitr4di | ⊢ ( 𝑅  ∈  𝑉  →  ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  ↔  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) ) ) ) | 
						
							| 19 |  | brtrclfv | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑎 ( t+ ‘ 𝑅 ) 𝑐  ↔  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) ) | 
						
							| 20 | 18 19 | imbi12d | ⊢ ( 𝑅  ∈  𝑉  →  ( ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  →  𝑎 ( t+ ‘ 𝑅 ) 𝑐 )  ↔  ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) ) ) | 
						
							| 21 | 20 | albidv | ⊢ ( 𝑅  ∈  𝑉  →  ( ∀ 𝑐 ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  →  𝑎 ( t+ ‘ 𝑅 ) 𝑐 )  ↔  ∀ 𝑐 ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) ) ) | 
						
							| 22 | 21 | 2albidv | ⊢ ( 𝑅  ∈  𝑉  →  ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  →  𝑎 ( t+ ‘ 𝑅 ) 𝑐 )  ↔  ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  ( 𝑎 𝑟 𝑏  ∧  𝑏 𝑟 𝑐 ) )  →  ∀ 𝑟 ( ( 𝑅  ⊆  𝑟  ∧  ( 𝑟  ∘  𝑟 )  ⊆  𝑟 )  →  𝑎 𝑟 𝑐 ) ) ) ) | 
						
							| 23 | 10 22 | mpbiri | ⊢ ( 𝑅  ∈  𝑉  →  ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  →  𝑎 ( t+ ‘ 𝑅 ) 𝑐 ) ) | 
						
							| 24 |  | cotr | ⊢ ( ( ( t+ ‘ 𝑅 )  ∘  ( t+ ‘ 𝑅 ) )  ⊆  ( t+ ‘ 𝑅 )  ↔  ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ( t+ ‘ 𝑅 ) 𝑏  ∧  𝑏 ( t+ ‘ 𝑅 ) 𝑐 )  →  𝑎 ( t+ ‘ 𝑅 ) 𝑐 ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( 𝑅  ∈  𝑉  →  ( ( t+ ‘ 𝑅 )  ∘  ( t+ ‘ 𝑅 ) )  ⊆  ( t+ ‘ 𝑅 ) ) |