Metamath Proof Explorer


Theorem trclimalb2

Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020)

Ref Expression
Assertion trclimalb2 ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 elex ( 𝑅𝑉𝑅 ∈ V )
2 1 adantr ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → 𝑅 ∈ V )
3 oveq1 ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑘 ) = ( 𝑅𝑟 𝑘 ) )
4 3 iuneq2d ( 𝑟 = 𝑅 𝑘 ∈ ℕ ( 𝑟𝑟 𝑘 ) = 𝑘 ∈ ℕ ( 𝑅𝑟 𝑘 ) )
5 dftrcl3 t+ = ( 𝑟 ∈ V ↦ 𝑘 ∈ ℕ ( 𝑟𝑟 𝑘 ) )
6 nnex ℕ ∈ V
7 ovex ( 𝑅𝑟 𝑘 ) ∈ V
8 6 7 iunex 𝑘 ∈ ℕ ( 𝑅𝑟 𝑘 ) ∈ V
9 4 5 8 fvmpt ( 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = 𝑘 ∈ ℕ ( 𝑅𝑟 𝑘 ) )
10 9 imaeq1d ( 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = ( 𝑘 ∈ ℕ ( 𝑅𝑟 𝑘 ) “ 𝐴 ) )
11 imaiun1 ( 𝑘 ∈ ℕ ( 𝑅𝑟 𝑘 ) “ 𝐴 ) = 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 )
12 10 11 eqtrdi ( 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) )
13 2 12 syl ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) )
14 oveq2 ( 𝑥 = 1 → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 1 ) )
15 14 imaeq1d ( 𝑥 = 1 → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅𝑟 1 ) “ 𝐴 ) )
16 15 sseq1d ( 𝑥 = 1 → ( ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 ) )
17 16 imbi2d ( 𝑥 = 1 → ( ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 ) ) )
18 oveq2 ( 𝑥 = 𝑦 → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 𝑦 ) )
19 18 imaeq1d ( 𝑥 = 𝑦 → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) )
20 19 sseq1d ( 𝑥 = 𝑦 → ( ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) )
21 20 imbi2d ( 𝑥 = 𝑦 → ( ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) ) )
22 oveq2 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 ( 𝑦 + 1 ) ) )
23 22 imaeq1d ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) )
24 23 sseq1d ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) )
25 24 imbi2d ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) )
26 oveq2 ( 𝑥 = 𝑘 → ( 𝑅𝑟 𝑥 ) = ( 𝑅𝑟 𝑘 ) )
27 26 imaeq1d ( 𝑥 = 𝑘 → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) )
28 27 sseq1d ( 𝑥 = 𝑘 → ( ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) )
29 28 imbi2d ( 𝑥 = 𝑘 → ( ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) ) )
30 relexp1g ( 𝑅𝑉 → ( 𝑅𝑟 1 ) = 𝑅 )
31 30 imaeq1d ( 𝑅𝑉 → ( ( 𝑅𝑟 1 ) “ 𝐴 ) = ( 𝑅𝐴 ) )
32 31 adantr ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 1 ) “ 𝐴 ) = ( 𝑅𝐴 ) )
33 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
34 imass2 ( 𝐴 ⊆ ( 𝐴𝐵 ) → ( 𝑅𝐴 ) ⊆ ( 𝑅 “ ( 𝐴𝐵 ) ) )
35 33 34 mp1i ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅𝐴 ) ⊆ ( 𝑅 “ ( 𝐴𝐵 ) ) )
36 simpr ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 )
37 35 36 sstrd ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅𝐴 ) ⊆ 𝐵 )
38 32 37 eqsstrd ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 )
39 simp2l ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → 𝑅𝑉 )
40 simp1 ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → 𝑦 ∈ ℕ )
41 relexpsucnnl ( ( 𝑅𝑉𝑦 ∈ ℕ ) → ( 𝑅𝑟 ( 𝑦 + 1 ) ) = ( 𝑅 ∘ ( 𝑅𝑟 𝑦 ) ) )
42 41 imaeq1d ( ( 𝑅𝑉𝑦 ∈ ℕ ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( ( 𝑅 ∘ ( 𝑅𝑟 𝑦 ) ) “ 𝐴 ) )
43 imaco ( ( 𝑅 ∘ ( 𝑅𝑟 𝑦 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) )
44 42 43 eqtrdi ( ( 𝑅𝑉𝑦 ∈ ℕ ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ) )
45 39 40 44 syl2anc ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ) )
46 imass2 ( ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 → ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ) ⊆ ( 𝑅𝐵 ) )
47 46 3ad2ant3 ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ) ⊆ ( 𝑅𝐵 ) )
48 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
49 imass2 ( 𝐵 ⊆ ( 𝐴𝐵 ) → ( 𝑅𝐵 ) ⊆ ( 𝑅 “ ( 𝐴𝐵 ) ) )
50 48 49 mp1i ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅𝐵 ) ⊆ ( 𝑅 “ ( 𝐴𝐵 ) ) )
51 simp2r ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 )
52 50 51 sstrd ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅𝐵 ) ⊆ 𝐵 )
53 47 52 sstrd ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ) ⊆ 𝐵 )
54 45 53 eqsstrd ( ( 𝑦 ∈ ℕ ∧ ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 )
55 54 3exp ( 𝑦 ∈ ℕ → ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) )
56 55 a2d ( 𝑦 ∈ ℕ → ( ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) )
57 17 21 25 29 38 56 nnind ( 𝑘 ∈ ℕ → ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) )
58 57 com12 ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( 𝑘 ∈ ℕ → ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) )
59 58 ralrimiv ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ∀ 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 )
60 iunss ( 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 )
61 59 60 sylibr ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → 𝑘 ∈ ℕ ( ( 𝑅𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 )
62 13 61 eqsstrd ( ( 𝑅𝑉 ∧ ( 𝑅 “ ( 𝐴𝐵 ) ) ⊆ 𝐵 ) → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) ⊆ 𝐵 )