| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → 𝑅 ∈ V ) |
| 3 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑘 ) = ( 𝑅 ↑𝑟 𝑘 ) ) |
| 4 |
3
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑘 ∈ ℕ ( 𝑟 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ℕ ( 𝑅 ↑𝑟 𝑘 ) ) |
| 5 |
|
dftrcl3 |
⊢ t+ = ( 𝑟 ∈ V ↦ ∪ 𝑘 ∈ ℕ ( 𝑟 ↑𝑟 𝑘 ) ) |
| 6 |
|
nnex |
⊢ ℕ ∈ V |
| 7 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑘 ) ∈ V |
| 8 |
6 7
|
iunex |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑅 ↑𝑟 𝑘 ) ∈ V |
| 9 |
4 5 8
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = ∪ 𝑘 ∈ ℕ ( 𝑅 ↑𝑟 𝑘 ) ) |
| 10 |
9
|
imaeq1d |
⊢ ( 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = ( ∪ 𝑘 ∈ ℕ ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ) |
| 11 |
|
imaiun1 |
⊢ ( ∪ 𝑘 ∈ ℕ ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) = ∪ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝑅 ∈ V → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = ∪ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ) |
| 13 |
2 12
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) = ∪ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 1 ) ) |
| 15 |
14
|
imaeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) ) |
| 16 |
15
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑦 ) ) |
| 19 |
18
|
imaeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) |
| 20 |
19
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 23 |
22
|
imaeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ) |
| 24 |
23
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑅 ↑𝑟 𝑥 ) = ( 𝑅 ↑𝑟 𝑘 ) ) |
| 27 |
26
|
imaeq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) = ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ) |
| 28 |
27
|
sseq1d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑥 ) “ 𝐴 ) ⊆ 𝐵 ) ↔ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 30 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
| 31 |
30
|
imaeq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) = ( 𝑅 “ 𝐴 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) = ( 𝑅 “ 𝐴 ) ) |
| 33 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 34 |
|
imass2 |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → ( 𝑅 “ 𝐴 ) ⊆ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 35 |
33 34
|
mp1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅 “ 𝐴 ) ⊆ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) |
| 37 |
35 36
|
sstrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ) |
| 38 |
32 37
|
eqsstrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 1 ) “ 𝐴 ) ⊆ 𝐵 ) |
| 39 |
|
simp2l |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → 𝑅 ∈ 𝑉 ) |
| 40 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → 𝑦 ∈ ℕ ) |
| 41 |
|
relexpsucnnl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ ) → ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) = ( 𝑅 ∘ ( 𝑅 ↑𝑟 𝑦 ) ) ) |
| 42 |
41
|
imaeq1d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( ( 𝑅 ∘ ( 𝑅 ↑𝑟 𝑦 ) ) “ 𝐴 ) ) |
| 43 |
|
imaco |
⊢ ( ( 𝑅 ∘ ( 𝑅 ↑𝑟 𝑦 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) |
| 44 |
42 43
|
eqtrdi |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) ) |
| 45 |
39 40 44
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) = ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) ) |
| 46 |
|
imass2 |
⊢ ( ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 → ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) ⊆ ( 𝑅 “ 𝐵 ) ) |
| 47 |
46
|
3ad2ant3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) ⊆ ( 𝑅 “ 𝐵 ) ) |
| 48 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 49 |
|
imass2 |
⊢ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → ( 𝑅 “ 𝐵 ) ⊆ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 50 |
48 49
|
mp1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ 𝐵 ) ⊆ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ) |
| 51 |
|
simp2r |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) |
| 52 |
50 51
|
sstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ 𝐵 ) ⊆ 𝐵 ) |
| 53 |
47 52
|
sstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 “ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ) ⊆ 𝐵 ) |
| 54 |
45 53
|
eqsstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) ∧ ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) |
| 55 |
54
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 56 |
55
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑦 ) “ 𝐴 ) ⊆ 𝐵 ) → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 ( 𝑦 + 1 ) ) “ 𝐴 ) ⊆ 𝐵 ) ) ) |
| 57 |
17 21 25 29 38 56
|
nnind |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 58 |
57
|
com12 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( 𝑘 ∈ ℕ → ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) ) |
| 59 |
58
|
ralrimiv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ∀ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) |
| 60 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) |
| 61 |
59 60
|
sylibr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ∪ 𝑘 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑘 ) “ 𝐴 ) ⊆ 𝐵 ) |
| 62 |
13 61
|
eqsstrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑅 “ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝐵 ) → ( ( t+ ‘ 𝑅 ) “ 𝐴 ) ⊆ 𝐵 ) |