| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-br |
⊢ ( 𝑋 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑋 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) ) |
| 3 |
|
trclfv |
⊢ ( 𝑅 ∈ 𝑊 → ( t+ ‘ 𝑅 ) = ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
| 4 |
3
|
breqd |
⊢ ( 𝑅 ∈ 𝑊 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑋 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑌 ) ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑋 ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑌 ) ) |
| 6 |
|
elimasng |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 ∈ ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑌 〉 ∈ ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑌 ∈ ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑌 〉 ∈ ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) ) |
| 8 |
2 5 7
|
3bitr4d |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑌 ∈ ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) ) ) |
| 9 |
|
intimasn |
⊢ ( 𝑋 ∈ 𝑈 → ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) = ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) = ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ) |
| 11 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑅 ∈ 𝑊 ) |
| 12 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 13 |
|
vex |
⊢ 𝑓 ∈ V |
| 14 |
12 13
|
xpex |
⊢ ( { 𝑋 } × 𝑓 ) ∈ V |
| 15 |
|
unexg |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ ( { 𝑋 } × 𝑓 ) ∈ V ) → ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ∈ V ) |
| 16 |
11 14 15
|
sylancl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ∈ V ) |
| 17 |
|
trclfvlb |
⊢ ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ∈ V → ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 18 |
17
|
unssad |
⊢ ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ∈ V → 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 19 |
16 18
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 20 |
|
trclfvcotrg |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) |
| 21 |
20
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 22 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑋 ∈ 𝑈 ) |
| 23 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ { 𝑋 } ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑋 ∈ { 𝑋 } ) |
| 25 |
|
inelcm |
⊢ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑋 ∈ { 𝑋 } ) → ( { 𝑋 } ∩ { 𝑋 } ) ≠ ∅ ) |
| 26 |
24 24 25
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( { 𝑋 } ∩ { 𝑋 } ) ≠ ∅ ) |
| 27 |
|
xpima2 |
⊢ ( ( { 𝑋 } ∩ { 𝑋 } ) ≠ ∅ → ( ( { 𝑋 } × 𝑓 ) “ { 𝑋 } ) = 𝑓 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( { 𝑋 } × 𝑓 ) “ { 𝑋 } ) = 𝑓 ) |
| 29 |
16 17
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 30 |
29
|
unssbd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( { 𝑋 } × 𝑓 ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 31 |
|
imass1 |
⊢ ( ( { 𝑋 } × 𝑓 ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) → ( ( { 𝑋 } × 𝑓 ) “ { 𝑋 } ) ⊆ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( { 𝑋 } × 𝑓 ) “ { 𝑋 } ) ⊆ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 33 |
28 32
|
eqsstrrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑓 ⊆ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 34 |
|
imaundir |
⊢ ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) “ ( { 𝑋 } ∪ 𝑓 ) ) = ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ∪ ( ( { 𝑋 } × 𝑓 ) “ ( { 𝑋 } ∪ 𝑓 ) ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) |
| 36 |
|
imassrn |
⊢ ( ( { 𝑋 } × 𝑓 ) “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ ran ( { 𝑋 } × 𝑓 ) |
| 37 |
|
rnxpss |
⊢ ran ( { 𝑋 } × 𝑓 ) ⊆ 𝑓 |
| 38 |
36 37
|
sstri |
⊢ ( ( { 𝑋 } × 𝑓 ) “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 |
| 39 |
38
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( { 𝑋 } × 𝑓 ) “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) |
| 40 |
35 39
|
unssd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ∪ ( ( { 𝑋 } × 𝑓 ) “ ( { 𝑋 } ∪ 𝑓 ) ) ) ⊆ 𝑓 ) |
| 41 |
34 40
|
eqsstrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) |
| 42 |
|
trclimalb2 |
⊢ ( ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ∈ V ∧ ( ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ⊆ 𝑓 ) |
| 43 |
16 41 42
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ⊆ 𝑓 ) |
| 44 |
33 43
|
eqssd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → 𝑓 = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 45 |
|
sbcan |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ↔ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 46 |
|
sbcan |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑅 ⊆ 𝑟 ∧ [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ) |
| 47 |
|
fvex |
⊢ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V |
| 48 |
|
sbcssg |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑅 ⊆ 𝑟 ↔ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑅 ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) ) |
| 49 |
47 48
|
ax-mp |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑅 ⊆ 𝑟 ↔ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑅 ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) |
| 50 |
|
csbconstg |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑅 = 𝑅 ) |
| 51 |
47 50
|
ax-mp |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑅 = 𝑅 |
| 52 |
47
|
csbvargi |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 = ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) |
| 53 |
51 52
|
sseq12i |
⊢ ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑅 ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ↔ 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 54 |
49 53
|
bitri |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑅 ⊆ 𝑟 ↔ 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 55 |
|
sbcssg |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) ) |
| 56 |
47 55
|
ax-mp |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) |
| 57 |
|
csbcog |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) = ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ∘ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) ) |
| 58 |
47 57
|
ax-mp |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) = ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ∘ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) |
| 59 |
52 52
|
coeq12i |
⊢ ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ∘ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ) = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 60 |
58 59
|
eqtri |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 61 |
60 52
|
sseq12i |
⊢ ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 ∘ 𝑟 ) ⊆ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 ↔ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 62 |
56 61
|
bitri |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) |
| 63 |
54 62
|
anbi12i |
⊢ ( ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑅 ⊆ 𝑟 ∧ [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∧ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ) |
| 64 |
46 63
|
bitri |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∧ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ) |
| 65 |
|
sbceq2g |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑓 = ( 𝑟 “ { 𝑋 } ) ↔ 𝑓 = ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 “ { 𝑋 } ) ) ) |
| 66 |
47 65
|
ax-mp |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑓 = ( 𝑟 “ { 𝑋 } ) ↔ 𝑓 = ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 “ { 𝑋 } ) ) |
| 67 |
|
csbima12 |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 “ { 𝑋 } ) = ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 “ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } ) |
| 68 |
52
|
imaeq1i |
⊢ ( ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ 𝑟 “ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } ) = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } ) |
| 69 |
|
csbconstg |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∈ V → ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } = { 𝑋 } ) |
| 70 |
47 69
|
ax-mp |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } = { 𝑋 } |
| 71 |
70
|
imaeq2i |
⊢ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ { 𝑋 } ) = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) |
| 72 |
67 68 71
|
3eqtri |
⊢ ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 “ { 𝑋 } ) = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) |
| 73 |
72
|
eqeq2i |
⊢ ( 𝑓 = ⦋ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ⦌ ( 𝑟 “ { 𝑋 } ) ↔ 𝑓 = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 74 |
66 73
|
bitri |
⊢ ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑓 = ( 𝑟 “ { 𝑋 } ) ↔ 𝑓 = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) |
| 75 |
64 74
|
anbi12i |
⊢ ( ( [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ↔ ( ( 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∧ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ∧ 𝑓 = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) ) |
| 76 |
45 75
|
sylbbr |
⊢ ( ( ( 𝑅 ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∧ ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ∘ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ⊆ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) ) ∧ 𝑓 = ( ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) “ { 𝑋 } ) ) → [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 77 |
19 21 44 76
|
syl21anc |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → [ ( t+ ‘ ( 𝑅 ∪ ( { 𝑋 } × 𝑓 ) ) ) / 𝑟 ] ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 78 |
77
|
spesbcd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) ∧ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ) → ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 79 |
78
|
ex |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 → ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) ) |
| 80 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 = ( 𝑠 “ { 𝑋 } ) ↔ 𝑓 = ( 𝑠 “ { 𝑋 } ) ) ) |
| 81 |
80
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) ↔ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑓 = ( 𝑠 “ { 𝑋 } ) ) ) |
| 82 |
|
imaeq1 |
⊢ ( 𝑠 = 𝑟 → ( 𝑠 “ { 𝑋 } ) = ( 𝑟 “ { 𝑋 } ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( 𝑠 = 𝑟 → ( 𝑓 = ( 𝑠 “ { 𝑋 } ) ↔ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 84 |
83
|
rexab2 |
⊢ ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑓 = ( 𝑠 “ { 𝑋 } ) ↔ ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 85 |
81 84
|
bitrdi |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) ↔ ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) ) |
| 86 |
13 85
|
elab |
⊢ ( 𝑓 ∈ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ↔ ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑓 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 87 |
79 86
|
imbitrrdi |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 → 𝑓 ∈ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ) ) |
| 88 |
|
intss1 |
⊢ ( 𝑓 ∈ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ 𝑓 ) |
| 89 |
87 88
|
syl6 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ 𝑓 ) ) |
| 90 |
89
|
alrimiv |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ∀ 𝑓 ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ 𝑓 ) ) |
| 91 |
|
ssintab |
⊢ ( ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ↔ ∀ 𝑓 ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ 𝑓 ) ) |
| 92 |
90 91
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ⊆ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 93 |
|
ssintab |
⊢ ( ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ↔ ∀ 𝑔 ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) → ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ 𝑔 ) ) |
| 94 |
82
|
eqeq2d |
⊢ ( 𝑠 = 𝑟 → ( 𝑔 = ( 𝑠 “ { 𝑋 } ) ↔ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 95 |
94
|
rexab2 |
⊢ ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) ↔ ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) ) |
| 96 |
|
simpr |
⊢ ( ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) → 𝑔 = ( 𝑟 “ { 𝑋 } ) ) |
| 97 |
|
imass1 |
⊢ ( 𝑅 ⊆ 𝑟 → ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ) |
| 99 |
|
imass1 |
⊢ ( 𝑅 ⊆ 𝑟 → ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ ( 𝑟 “ { 𝑋 } ) ) ) |
| 100 |
|
imaco |
⊢ ( ( 𝑟 ∘ 𝑟 ) “ { 𝑋 } ) = ( 𝑟 “ ( 𝑟 “ { 𝑋 } ) ) |
| 101 |
|
imass1 |
⊢ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 → ( ( 𝑟 ∘ 𝑟 ) “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ) |
| 102 |
100 101
|
eqsstrrid |
⊢ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 → ( 𝑟 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) |
| 103 |
99 102
|
sylan9ss |
⊢ ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) |
| 104 |
98 103
|
jca |
⊢ ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ∧ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) |
| 105 |
104
|
adantr |
⊢ ( ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) → ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ∧ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) |
| 106 |
|
vex |
⊢ 𝑟 ∈ V |
| 107 |
106
|
imaex |
⊢ ( 𝑟 “ { 𝑋 } ) ∈ V |
| 108 |
|
imaundi |
⊢ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) = ( ( 𝑅 “ { 𝑋 } ) ∪ ( 𝑅 “ 𝑓 ) ) |
| 109 |
108
|
sseq1i |
⊢ ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅 “ { 𝑋 } ) ∪ ( 𝑅 “ 𝑓 ) ) ⊆ 𝑓 ) |
| 110 |
|
unss |
⊢ ( ( ( 𝑅 “ { 𝑋 } ) ⊆ 𝑓 ∧ ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ) ↔ ( ( 𝑅 “ { 𝑋 } ) ∪ ( 𝑅 “ 𝑓 ) ) ⊆ 𝑓 ) |
| 111 |
109 110
|
bitr4i |
⊢ ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅 “ { 𝑋 } ) ⊆ 𝑓 ∧ ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ) ) |
| 112 |
|
imaeq2 |
⊢ ( 𝑓 = ( 𝑟 “ { 𝑋 } ) → ( 𝑅 “ 𝑓 ) = ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ) |
| 113 |
|
id |
⊢ ( 𝑓 = ( 𝑟 “ { 𝑋 } ) → 𝑓 = ( 𝑟 “ { 𝑋 } ) ) |
| 114 |
112 113
|
sseq12d |
⊢ ( 𝑓 = ( 𝑟 “ { 𝑋 } ) → ( ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ↔ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) |
| 115 |
114
|
cleq2lem |
⊢ ( 𝑓 = ( 𝑟 “ { 𝑋 } ) → ( ( ( 𝑅 “ { 𝑋 } ) ⊆ 𝑓 ∧ ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ) ↔ ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ∧ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) ) |
| 116 |
111 115
|
bitrid |
⊢ ( 𝑓 = ( 𝑟 “ { 𝑋 } ) → ( ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ∧ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) ) |
| 117 |
107 116
|
elab |
⊢ ( ( 𝑟 “ { 𝑋 } ) ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ↔ ( ( 𝑅 “ { 𝑋 } ) ⊆ ( 𝑟 “ { 𝑋 } ) ∧ ( 𝑅 “ ( 𝑟 “ { 𝑋 } ) ) ⊆ ( 𝑟 “ { 𝑋 } ) ) ) |
| 118 |
105 117
|
sylibr |
⊢ ( ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) → ( 𝑟 “ { 𝑋 } ) ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 119 |
96 118
|
eqeltrd |
⊢ ( ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) → 𝑔 ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 120 |
119
|
exlimiv |
⊢ ( ∃ 𝑟 ( ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ∧ 𝑔 = ( 𝑟 “ { 𝑋 } ) ) → 𝑔 ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 121 |
95 120
|
sylbi |
⊢ ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) → 𝑔 ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 122 |
|
intss1 |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } → ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ 𝑔 ) |
| 123 |
121 122
|
syl |
⊢ ( ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) → ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ 𝑔 ) |
| 124 |
93 123
|
mpgbir |
⊢ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } |
| 125 |
124
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ⊆ ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } ) |
| 126 |
92 125
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ∩ { 𝑔 ∣ ∃ 𝑠 ∈ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } 𝑔 = ( 𝑠 “ { 𝑋 } ) } = ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 127 |
10 126
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) = ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
| 128 |
127
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑌 ∈ ( ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } “ { 𝑋 } ) ↔ 𝑌 ∈ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) ) |
| 129 |
8 128
|
bitrd |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑌 ∈ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝑋 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) ) |