Metamath Proof Explorer


Theorem brtrclfv2

Description: Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020)

Ref Expression
Assertion brtrclfv2 XUYVRWXt+RYYf|RXff

Proof

Step Hyp Ref Expression
1 df-br Xr|RrrrrYXYr|Rrrrr
2 1 a1i XUYVRWXr|RrrrrYXYr|Rrrrr
3 trclfv RWt+R=r|Rrrrr
4 3 breqd RWXt+RYXr|RrrrrY
5 4 3ad2ant3 XUYVRWXt+RYXr|RrrrrY
6 elimasng XUYVYr|RrrrrXXYr|Rrrrr
7 6 3adant3 XUYVRWYr|RrrrrXXYr|Rrrrr
8 2 5 7 3bitr4d XUYVRWXt+RYYr|RrrrrX
9 intimasn XUr|RrrrrX=g|sr|Rrrrrg=sX
10 9 3ad2ant1 XUYVRWr|RrrrrX=g|sr|Rrrrrg=sX
11 simpl3 XUYVRWRXffRW
12 snex XV
13 vex fV
14 12 13 xpex X×fV
15 unexg RWX×fVRX×fV
16 11 14 15 sylancl XUYVRWRXffRX×fV
17 trclfvlb RX×fVRX×ft+RX×f
18 17 unssad RX×fVRt+RX×f
19 16 18 syl XUYVRWRXffRt+RX×f
20 trclfvcotrg t+RX×ft+RX×ft+RX×f
21 20 a1i XUYVRWRXfft+RX×ft+RX×ft+RX×f
22 simpl1 XUYVRWRXffXU
23 snidg XUXX
24 22 23 syl XUYVRWRXffXX
25 inelcm XXXXXX
26 24 24 25 syl2anc XUYVRWRXffXX
27 xpima2 XXX×fX=f
28 26 27 syl XUYVRWRXffX×fX=f
29 16 17 syl XUYVRWRXffRX×ft+RX×f
30 29 unssbd XUYVRWRXffX×ft+RX×f
31 imass1 X×ft+RX×fX×fXt+RX×fX
32 30 31 syl XUYVRWRXffX×fXt+RX×fX
33 28 32 eqsstrrd XUYVRWRXffft+RX×fX
34 imaundir RX×fXf=RXfX×fXf
35 simpr XUYVRWRXffRXff
36 imassrn X×fXfranX×f
37 rnxpss ranX×ff
38 36 37 sstri X×fXff
39 38 a1i XUYVRWRXffX×fXff
40 35 39 unssd XUYVRWRXffRXfX×fXff
41 34 40 eqsstrid XUYVRWRXffRX×fXff
42 trclimalb2 RX×fVRX×fXfft+RX×fXf
43 16 41 42 syl2anc XUYVRWRXfft+RX×fXf
44 33 43 eqssd XUYVRWRXfff=t+RX×fX
45 sbcan [˙t+RX×f/r]˙Rrrrrf=rX[˙t+RX×f/r]˙Rrrrr[˙t+RX×f/r]˙f=rX
46 sbcan [˙t+RX×f/r]˙Rrrrr[˙t+RX×f/r]˙Rr[˙t+RX×f/r]˙rrr
47 fvex t+RX×fV
48 sbcssg t+RX×fV[˙t+RX×f/r]˙Rrt+RX×f/rRt+RX×f/rr
49 47 48 ax-mp [˙t+RX×f/r]˙Rrt+RX×f/rRt+RX×f/rr
50 csbconstg t+RX×fVt+RX×f/rR=R
51 47 50 ax-mp t+RX×f/rR=R
52 47 csbvargi t+RX×f/rr=t+RX×f
53 51 52 sseq12i t+RX×f/rRt+RX×f/rrRt+RX×f
54 49 53 bitri [˙t+RX×f/r]˙RrRt+RX×f
55 sbcssg t+RX×fV[˙t+RX×f/r]˙rrrt+RX×f/rrrt+RX×f/rr
56 47 55 ax-mp [˙t+RX×f/r]˙rrrt+RX×f/rrrt+RX×f/rr
57 csbcog t+RX×fVt+RX×f/rrr=t+RX×f/rrt+RX×f/rr
58 47 57 ax-mp t+RX×f/rrr=t+RX×f/rrt+RX×f/rr
59 52 52 coeq12i t+RX×f/rrt+RX×f/rr=t+RX×ft+RX×f
60 58 59 eqtri t+RX×f/rrr=t+RX×ft+RX×f
61 60 52 sseq12i t+RX×f/rrrt+RX×f/rrt+RX×ft+RX×ft+RX×f
62 56 61 bitri [˙t+RX×f/r]˙rrrt+RX×ft+RX×ft+RX×f
63 54 62 anbi12i [˙t+RX×f/r]˙Rr[˙t+RX×f/r]˙rrrRt+RX×ft+RX×ft+RX×ft+RX×f
64 46 63 bitri [˙t+RX×f/r]˙RrrrrRt+RX×ft+RX×ft+RX×ft+RX×f
65 sbceq2g t+RX×fV[˙t+RX×f/r]˙f=rXf=t+RX×f/rrX
66 47 65 ax-mp [˙t+RX×f/r]˙f=rXf=t+RX×f/rrX
67 csbima12 t+RX×f/rrX=t+RX×f/rrt+RX×f/rX
68 52 imaeq1i t+RX×f/rrt+RX×f/rX=t+RX×ft+RX×f/rX
69 csbconstg t+RX×fVt+RX×f/rX=X
70 47 69 ax-mp t+RX×f/rX=X
71 70 imaeq2i t+RX×ft+RX×f/rX=t+RX×fX
72 67 68 71 3eqtri t+RX×f/rrX=t+RX×fX
73 72 eqeq2i f=t+RX×f/rrXf=t+RX×fX
74 66 73 bitri [˙t+RX×f/r]˙f=rXf=t+RX×fX
75 64 74 anbi12i [˙t+RX×f/r]˙Rrrrr[˙t+RX×f/r]˙f=rXRt+RX×ft+RX×ft+RX×ft+RX×ff=t+RX×fX
76 45 75 sylbbr Rt+RX×ft+RX×ft+RX×ft+RX×ff=t+RX×fX[˙t+RX×f/r]˙Rrrrrf=rX
77 19 21 44 76 syl21anc XUYVRWRXff[˙t+RX×f/r]˙Rrrrrf=rX
78 77 spesbcd XUYVRWRXffrRrrrrf=rX
79 78 ex XUYVRWRXffrRrrrrf=rX
80 eqeq1 g=fg=sXf=sX
81 80 rexbidv g=fsr|Rrrrrg=sXsr|Rrrrrf=sX
82 imaeq1 s=rsX=rX
83 82 eqeq2d s=rf=sXf=rX
84 83 rexab2 sr|Rrrrrf=sXrRrrrrf=rX
85 81 84 bitrdi g=fsr|Rrrrrg=sXrRrrrrf=rX
86 13 85 elab fg|sr|Rrrrrg=sXrRrrrrf=rX
87 79 86 imbitrrdi XUYVRWRXfffg|sr|Rrrrrg=sX
88 intss1 fg|sr|Rrrrrg=sXg|sr|Rrrrrg=sXf
89 87 88 syl6 XUYVRWRXffg|sr|Rrrrrg=sXf
90 89 alrimiv XUYVRWfRXffg|sr|Rrrrrg=sXf
91 ssintab g|sr|Rrrrrg=sXf|RXfffRXffg|sr|Rrrrrg=sXf
92 90 91 sylibr XUYVRWg|sr|Rrrrrg=sXf|RXff
93 ssintab f|RXffg|sr|Rrrrrg=sXgsr|Rrrrrg=sXf|RXffg
94 82 eqeq2d s=rg=sXg=rX
95 94 rexab2 sr|Rrrrrg=sXrRrrrrg=rX
96 simpr Rrrrrg=rXg=rX
97 imass1 RrRXrX
98 97 adantr RrrrrRXrX
99 imass1 RrRrXrrX
100 imaco rrX=rrX
101 imass1 rrrrrXrX
102 100 101 eqsstrrid rrrrrXrX
103 99 102 sylan9ss RrrrrRrXrX
104 98 103 jca RrrrrRXrXRrXrX
105 104 adantr Rrrrrg=rXRXrXRrXrX
106 vex rV
107 106 imaex rXV
108 imaundi RXf=RXRf
109 108 sseq1i RXffRXRff
110 unss RXfRffRXRff
111 109 110 bitr4i RXffRXfRff
112 imaeq2 f=rXRf=RrX
113 id f=rXf=rX
114 112 113 sseq12d f=rXRffRrXrX
115 114 cleq2lem f=rXRXfRffRXrXRrXrX
116 111 115 bitrid f=rXRXffRXrXRrXrX
117 107 116 elab rXf|RXffRXrXRrXrX
118 105 117 sylibr Rrrrrg=rXrXf|RXff
119 96 118 eqeltrd Rrrrrg=rXgf|RXff
120 119 exlimiv rRrrrrg=rXgf|RXff
121 95 120 sylbi sr|Rrrrrg=sXgf|RXff
122 intss1 gf|RXfff|RXffg
123 121 122 syl sr|Rrrrrg=sXf|RXffg
124 93 123 mpgbir f|RXffg|sr|Rrrrrg=sX
125 124 a1i XUYVRWf|RXffg|sr|Rrrrrg=sX
126 92 125 eqssd XUYVRWg|sr|Rrrrrg=sX=f|RXff
127 10 126 eqtrd XUYVRWr|RrrrrX=f|RXff
128 127 eleq2d XUYVRWYr|RrrrrXYf|RXff
129 8 128 bitrd XUYVRWXt+RYYf|RXff