Metamath Proof Explorer


Theorem csbcog

Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020)

Ref Expression
Assertion csbcog A V A / x B C = A / x B A / x C

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x B C = A / x B C
2 csbeq1 y = A y / x B = A / x B
3 csbeq1 y = A y / x C = A / x C
4 2 3 coeq12d y = A y / x B y / x C = A / x B A / x C
5 1 4 eqeq12d y = A y / x B C = y / x B y / x C A / x B C = A / x B A / x C
6 vex y V
7 nfcsb1v _ x y / x B
8 nfcsb1v _ x y / x C
9 7 8 nfco _ x y / x B y / x C
10 csbeq1a x = y B = y / x B
11 csbeq1a x = y C = y / x C
12 10 11 coeq12d x = y B C = y / x B y / x C
13 6 9 12 csbief y / x B C = y / x B y / x C
14 5 13 vtoclg A V A / x B C = A / x B A / x C