Metamath Proof Explorer


Theorem csbcog

Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020)

Ref Expression
Assertion csbcog ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐵𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 ( 𝐵𝐶 ) = 𝐴 / 𝑥 ( 𝐵𝐶 ) )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
3 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐶 )
4 2 3 coeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
5 1 4 eqeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 ( 𝐵𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐶 ) ↔ 𝐴 / 𝑥 ( 𝐵𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) ) )
6 vex 𝑦 ∈ V
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
9 7 8 nfco 𝑥 ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐶 )
10 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
11 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
12 10 11 coeq12d ( 𝑥 = 𝑦 → ( 𝐵𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐶 ) )
13 6 9 12 csbief 𝑦 / 𝑥 ( 𝐵𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐶 )
14 5 13 vtoclg ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐵𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )