Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ ( B o. C ) = [_ A / x ]_ ( B o. C ) ) |
2 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
3 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
4 |
2 3
|
coeq12d |
|- ( y = A -> ( [_ y / x ]_ B o. [_ y / x ]_ C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |
5 |
1 4
|
eqeq12d |
|- ( y = A -> ( [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) <-> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) ) |
6 |
|
vex |
|- y e. _V |
7 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
9 |
7 8
|
nfco |
|- F/_ x ( [_ y / x ]_ B o. [_ y / x ]_ C ) |
10 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
11 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
12 |
10 11
|
coeq12d |
|- ( x = y -> ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) ) |
13 |
6 9 12
|
csbief |
|- [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) |
14 |
5 13
|
vtoclg |
|- ( A e. V -> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |