| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snres0.1 |
|- B e. _V |
| 2 |
|
relres |
|- Rel ( { <. A , B >. } |` C ) |
| 3 |
|
reldm0 |
|- ( Rel ( { <. A , B >. } |` C ) -> ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( { <. A , B >. } |` C ) = (/) <-> dom ( { <. A , B >. } |` C ) = (/) ) |
| 5 |
|
dmres |
|- dom ( { <. A , B >. } |` C ) = ( C i^i dom { <. A , B >. } ) |
| 6 |
1
|
dmsnop |
|- dom { <. A , B >. } = { A } |
| 7 |
6
|
ineq2i |
|- ( C i^i dom { <. A , B >. } ) = ( C i^i { A } ) |
| 8 |
5 7
|
eqtri |
|- dom ( { <. A , B >. } |` C ) = ( C i^i { A } ) |
| 9 |
8
|
eqeq1i |
|- ( dom ( { <. A , B >. } |` C ) = (/) <-> ( C i^i { A } ) = (/) ) |
| 10 |
|
disjsn |
|- ( ( C i^i { A } ) = (/) <-> -. A e. C ) |
| 11 |
4 9 10
|
3bitri |
|- ( ( { <. A , B >. } |` C ) = (/) <-> -. A e. C ) |