Metamath Proof Explorer


Theorem csbima12

Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbima12 A/xFB=A/xFA/xB

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xFB=A/xFB
2 csbeq1 y=Ay/xF=A/xF
3 csbeq1 y=Ay/xB=A/xB
4 2 3 imaeq12d y=Ay/xFy/xB=A/xFA/xB
5 1 4 eqeq12d y=Ay/xFB=y/xFy/xBA/xFB=A/xFA/xB
6 vex yV
7 nfcsb1v _xy/xF
8 nfcsb1v _xy/xB
9 7 8 nfima _xy/xFy/xB
10 csbeq1a x=yF=y/xF
11 csbeq1a x=yB=y/xB
12 10 11 imaeq12d x=yFB=y/xFy/xB
13 6 9 12 csbief y/xFB=y/xFy/xB
14 5 13 vtoclg AVA/xFB=A/xFA/xB
15 csbprc ¬AVA/xFB=
16 csbprc ¬AVA/xB=
17 16 imaeq2d ¬AVA/xFA/xB=A/xF
18 ima0 A/xF=
19 17 18 eqtr2di ¬AV=A/xFA/xB
20 15 19 eqtrd ¬AVA/xFB=A/xFA/xB
21 14 20 pm2.61i A/xFB=A/xFA/xB