Metamath Proof Explorer


Theorem imadisj

Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007)

Ref Expression
Assertion imadisj AB=domAB=

Proof

Step Hyp Ref Expression
1 df-ima AB=ranAB
2 1 eqeq1i AB=ranAB=
3 dm0rn0 domAB=ranAB=
4 dmres domAB=BdomA
5 incom BdomA=domAB
6 4 5 eqtri domAB=domAB
7 6 eqeq1i domAB=domAB=
8 2 3 7 3bitr2i AB=domAB=