Metamath Proof Explorer


Theorem intimasn

Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimasn B V A B = x | a A x = a B

Proof

Step Hyp Ref Expression
1 ax-5 B V y B V
2 r19.12sn B V b B a A b y a a A b B b y a
3 2 biimprd B V a A b B b y a b B a A b y a
4 3 alimi y B V y a A b B b y a b B a A b y a
5 intimag y a A b B b y a b B a A b y a A B = x | a A x = a B
6 1 4 5 3syl B V A B = x | a A x = a B