Metamath Proof Explorer


Theorem intimag

Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimag y a A b B b y a b B a A b y a A B = x | a A x = a B

Proof

Step Hyp Ref Expression
1 r19.12 b B a A b y a a A b B b y a
2 id a A b B b y a b B a A b y a a A b B b y a b B a A b y a
3 1 2 impbid2 a A b B b y a b B a A b y a b B a A b y a a A b B b y a
4 elimaint y A B b B a A b y a
5 elintima y x | a A x = a B a A b B b y a
6 3 4 5 3bitr4g a A b B b y a b B a A b y a y A B y x | a A x = a B
7 6 alimi y a A b B b y a b B a A b y a y y A B y x | a A x = a B
8 dfcleq A B = x | a A x = a B y y A B y x | a A x = a B
9 7 8 sylibr y a A b B b y a b B a A b y a A B = x | a A x = a B