Metamath Proof Explorer


Theorem intimag

Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimag yaAbBbyabBaAbyaAB=x|aAx=aB

Proof

Step Hyp Ref Expression
1 r19.12 bBaAbyaaAbBbya
2 id aAbBbyabBaAbyaaAbBbyabBaAbya
3 1 2 impbid2 aAbBbyabBaAbyabBaAbyaaAbBbya
4 elimaint yABbBaAbya
5 elintima yx|aAx=aBaAbBbya
6 3 4 5 3bitr4g aAbBbyabBaAbyayAByx|aAx=aB
7 6 alimi yaAbBbyabBaAbyayyAByx|aAx=aB
8 dfcleq AB=x|aAx=aByyAByx|aAx=aB
9 7 8 sylibr yaAbBbyabBaAbyaAB=x|aAx=aB