Metamath Proof Explorer


Theorem intimag

Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimag ( ∀ 𝑦 ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ( 𝐴𝐵 ) = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } )

Proof

Step Hyp Ref Expression
1 r19.12 ( ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 )
2 id ( ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) )
3 1 2 impbid2 ( ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ( ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ↔ ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 ) )
4 elimaint ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )
5 elintima ( 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ↔ ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 )
6 3 4 5 3bitr4g ( ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ) )
7 6 alimi ( ∀ 𝑦 ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ∀ 𝑦 ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ) )
8 dfcleq ( ( 𝐴𝐵 ) = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ 𝑦 { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } ) )
9 7 8 sylibr ( ∀ 𝑦 ( ∀ 𝑎𝐴𝑏𝐵𝑏 , 𝑦 ⟩ ∈ 𝑎 → ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 ) → ( 𝐴𝐵 ) = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = ( 𝑎𝐵 ) } )