Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
2 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
3 |
2
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ) |
4 |
|
dftrcl3 |
⊢ t+ = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
5 |
|
nnex |
⊢ ℕ ∈ V |
6 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
7 |
5 6
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ∈ V |
8 |
3 4 7
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ) |
9 |
1 8
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) ) |
10 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
11 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
12 |
|
uzsplit |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( 2 − 1 ) ) ∪ ( ℤ≥ ‘ 2 ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( 2 − 1 ) ) ∪ ( ℤ≥ ‘ 2 ) ) |
14 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
15 |
14
|
oveq2i |
⊢ ( 1 ... ( 2 − 1 ) ) = ( 1 ... 1 ) |
16 |
|
1z |
⊢ 1 ∈ ℤ |
17 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
18 |
16 17
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
19 |
15 18
|
eqtri |
⊢ ( 1 ... ( 2 − 1 ) ) = { 1 } |
20 |
19
|
uneq1i |
⊢ ( ( 1 ... ( 2 − 1 ) ) ∪ ( ℤ≥ ‘ 2 ) ) = ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) |
21 |
10 13 20
|
3eqtri |
⊢ ℕ = ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) |
22 |
|
iuneq1 |
⊢ ( ℕ = ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) ( 𝑅 ↑𝑟 𝑛 ) ) |
23 |
21 22
|
ax-mp |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) ( 𝑅 ↑𝑟 𝑛 ) |
24 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( { 1 } ∪ ( ℤ≥ ‘ 2 ) ) ( 𝑅 ↑𝑟 𝑛 ) = ( ∪ 𝑛 ∈ { 1 } ( 𝑅 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
25 |
|
1ex |
⊢ 1 ∈ V |
26 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 1 ) ) |
27 |
25 26
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 1 } ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 1 ) |
28 |
27
|
uneq1i |
⊢ ( ∪ 𝑛 ∈ { 1 } ( 𝑅 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) = ( ( 𝑅 ↑𝑟 1 ) ∪ ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
29 |
23 24 28
|
3eqtri |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) = ( ( 𝑅 ↑𝑟 1 ) ∪ ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
30 |
|
relexp1g |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) |
31 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↑𝑟 𝑚 ) = ( 𝑅 ↑𝑟 𝑚 ) ) |
32 |
31
|
iuneq2d |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑚 ∈ ℕ ( 𝑟 ↑𝑟 𝑚 ) = ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ) |
33 |
|
dftrcl3 |
⊢ t+ = ( 𝑟 ∈ V ↦ ∪ 𝑚 ∈ ℕ ( 𝑟 ↑𝑟 𝑚 ) ) |
34 |
|
ovex |
⊢ ( 𝑅 ↑𝑟 𝑚 ) ∈ V |
35 |
5 34
|
iunex |
⊢ ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ∈ V |
36 |
32 33 35
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( t+ ‘ 𝑅 ) = ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ) |
37 |
1 36
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ) |
38 |
37
|
coeq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) = ( ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
39 |
|
coiun1 |
⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ∪ 𝑚 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) |
40 |
|
uz2m1nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 − 1 ) ∈ ℕ ) |
41 |
40
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑛 − 1 ) ∈ ℕ ) |
42 |
|
eluzp1p1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
43 |
42 10
|
eleq2s |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
44 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
45 |
44
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 + 1 ) ) = ( ℤ≥ ‘ 2 ) |
46 |
43 45
|
eleqtrdi |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
48 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( 𝑅 ↑𝑟 𝑚 ) = ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ) |
49 |
48
|
coeq1d |
⊢ ( 𝑚 = ( 𝑛 − 1 ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑚 = ( 𝑛 − 1 ) ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) |
51 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
52 |
51
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ∧ 𝑛 = ( 𝑚 + 1 ) ) → ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
53 |
|
relexpsucnnr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ) → ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) = ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ( 𝑅 ↑𝑟 ( 𝑚 + 1 ) ) ) |
55 |
|
relexpsucnnr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑛 − 1 ) ∈ ℕ ) → ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) |
56 |
40 55
|
sylan2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) |
57 |
|
eluzelcn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → 𝑛 ∈ ℂ ) |
58 |
|
npcan1 |
⊢ ( 𝑛 ∈ ℂ → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
59 |
|
oveq2 |
⊢ ( ( ( 𝑛 − 1 ) + 1 ) = 𝑛 → ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
60 |
57 58 59
|
3syl |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( 𝑅 ↑𝑟 𝑛 ) ) |
61 |
60
|
eqeq1d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ↔ ( 𝑅 ↑𝑟 𝑛 ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑅 ↑𝑟 ( ( 𝑛 − 1 ) + 1 ) ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ↔ ( 𝑅 ↑𝑟 𝑛 ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) ) |
63 |
56 62
|
mpbid |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 ↑𝑟 𝑛 ) = ( ( 𝑅 ↑𝑟 ( 𝑛 − 1 ) ) ∘ 𝑅 ) ) |
64 |
41 47 50 52 54 63
|
cbviuneq12dv |
⊢ ( 𝑅 ∈ 𝑉 → ∪ 𝑚 ∈ ℕ ( ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
65 |
39 64
|
syl5eq |
⊢ ( 𝑅 ∈ 𝑉 → ( ∪ 𝑚 ∈ ℕ ( 𝑅 ↑𝑟 𝑚 ) ∘ 𝑅 ) = ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
66 |
38 65
|
eqtrd |
⊢ ( 𝑅 ∈ 𝑉 → ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) = ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) |
67 |
66
|
eqcomd |
⊢ ( 𝑅 ∈ 𝑉 → ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) = ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) |
68 |
30 67
|
uneq12d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ∪ ∪ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ( 𝑅 ↑𝑟 𝑛 ) ) = ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) ) |
69 |
29 68
|
syl5eq |
⊢ ( 𝑅 ∈ 𝑉 → ∪ 𝑛 ∈ ℕ ( 𝑅 ↑𝑟 𝑛 ) = ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) ) |
70 |
9 69
|
eqtrd |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) ) |