Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( R e. V -> R e. _V ) |
2 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
3 |
2
|
iuneq2d |
|- ( r = R -> U_ n e. NN ( r ^r n ) = U_ n e. NN ( R ^r n ) ) |
4 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
5 |
|
nnex |
|- NN e. _V |
6 |
|
ovex |
|- ( R ^r n ) e. _V |
7 |
5 6
|
iunex |
|- U_ n e. NN ( R ^r n ) e. _V |
8 |
3 4 7
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
9 |
1 8
|
syl |
|- ( R e. V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
10 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
11 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
12 |
|
uzsplit |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) ) |
13 |
11 12
|
ax-mp |
|- ( ZZ>= ` 1 ) = ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) |
14 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
15 |
14
|
oveq2i |
|- ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 ) |
16 |
|
1z |
|- 1 e. ZZ |
17 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
18 |
16 17
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
19 |
15 18
|
eqtri |
|- ( 1 ... ( 2 - 1 ) ) = { 1 } |
20 |
19
|
uneq1i |
|- ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) = ( { 1 } u. ( ZZ>= ` 2 ) ) |
21 |
10 13 20
|
3eqtri |
|- NN = ( { 1 } u. ( ZZ>= ` 2 ) ) |
22 |
|
iuneq1 |
|- ( NN = ( { 1 } u. ( ZZ>= ` 2 ) ) -> U_ n e. NN ( R ^r n ) = U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) ) |
23 |
21 22
|
ax-mp |
|- U_ n e. NN ( R ^r n ) = U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) |
24 |
|
iunxun |
|- U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) = ( U_ n e. { 1 } ( R ^r n ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
25 |
|
1ex |
|- 1 e. _V |
26 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
27 |
25 26
|
iunxsn |
|- U_ n e. { 1 } ( R ^r n ) = ( R ^r 1 ) |
28 |
27
|
uneq1i |
|- ( U_ n e. { 1 } ( R ^r n ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) = ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
29 |
23 24 28
|
3eqtri |
|- U_ n e. NN ( R ^r n ) = ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
30 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
31 |
|
oveq1 |
|- ( r = R -> ( r ^r m ) = ( R ^r m ) ) |
32 |
31
|
iuneq2d |
|- ( r = R -> U_ m e. NN ( r ^r m ) = U_ m e. NN ( R ^r m ) ) |
33 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ m e. NN ( r ^r m ) ) |
34 |
|
ovex |
|- ( R ^r m ) e. _V |
35 |
5 34
|
iunex |
|- U_ m e. NN ( R ^r m ) e. _V |
36 |
32 33 35
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ m e. NN ( R ^r m ) ) |
37 |
1 36
|
syl |
|- ( R e. V -> ( t+ ` R ) = U_ m e. NN ( R ^r m ) ) |
38 |
37
|
coeq1d |
|- ( R e. V -> ( ( t+ ` R ) o. R ) = ( U_ m e. NN ( R ^r m ) o. R ) ) |
39 |
|
coiun1 |
|- ( U_ m e. NN ( R ^r m ) o. R ) = U_ m e. NN ( ( R ^r m ) o. R ) |
40 |
|
uz2m1nn |
|- ( n e. ( ZZ>= ` 2 ) -> ( n - 1 ) e. NN ) |
41 |
40
|
adantl |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( n - 1 ) e. NN ) |
42 |
|
eluzp1p1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( m + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
43 |
42 10
|
eleq2s |
|- ( m e. NN -> ( m + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
44 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
45 |
44
|
fveq2i |
|- ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` 2 ) |
46 |
43 45
|
eleqtrdi |
|- ( m e. NN -> ( m + 1 ) e. ( ZZ>= ` 2 ) ) |
47 |
46
|
adantl |
|- ( ( R e. V /\ m e. NN ) -> ( m + 1 ) e. ( ZZ>= ` 2 ) ) |
48 |
|
oveq2 |
|- ( m = ( n - 1 ) -> ( R ^r m ) = ( R ^r ( n - 1 ) ) ) |
49 |
48
|
coeq1d |
|- ( m = ( n - 1 ) -> ( ( R ^r m ) o. R ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
50 |
49
|
3ad2ant3 |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) /\ m = ( n - 1 ) ) -> ( ( R ^r m ) o. R ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
51 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
52 |
51
|
3ad2ant3 |
|- ( ( R e. V /\ m e. NN /\ n = ( m + 1 ) ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
53 |
|
relexpsucnnr |
|- ( ( R e. V /\ m e. NN ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
54 |
53
|
eqcomd |
|- ( ( R e. V /\ m e. NN ) -> ( ( R ^r m ) o. R ) = ( R ^r ( m + 1 ) ) ) |
55 |
|
relexpsucnnr |
|- ( ( R e. V /\ ( n - 1 ) e. NN ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
56 |
40 55
|
sylan2 |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
57 |
|
eluzelcn |
|- ( n e. ( ZZ>= ` 2 ) -> n e. CC ) |
58 |
|
npcan1 |
|- ( n e. CC -> ( ( n - 1 ) + 1 ) = n ) |
59 |
|
oveq2 |
|- ( ( ( n - 1 ) + 1 ) = n -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( R ^r n ) ) |
60 |
57 58 59
|
3syl |
|- ( n e. ( ZZ>= ` 2 ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( R ^r n ) ) |
61 |
60
|
eqeq1d |
|- ( n e. ( ZZ>= ` 2 ) -> ( ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) <-> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) ) |
62 |
61
|
adantl |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) <-> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) ) |
63 |
56 62
|
mpbid |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
64 |
41 47 50 52 54 63
|
cbviuneq12dv |
|- ( R e. V -> U_ m e. NN ( ( R ^r m ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
65 |
39 64
|
syl5eq |
|- ( R e. V -> ( U_ m e. NN ( R ^r m ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
66 |
38 65
|
eqtrd |
|- ( R e. V -> ( ( t+ ` R ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
67 |
66
|
eqcomd |
|- ( R e. V -> U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) = ( ( t+ ` R ) o. R ) ) |
68 |
30 67
|
uneq12d |
|- ( R e. V -> ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |
69 |
29 68
|
syl5eq |
|- ( R e. V -> U_ n e. NN ( R ^r n ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |
70 |
9 69
|
eqtrd |
|- ( R e. V -> ( t+ ` R ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |