| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 2 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
| 3 |
2
|
iuneq2d |
|- ( r = R -> U_ n e. NN ( r ^r n ) = U_ n e. NN ( R ^r n ) ) |
| 4 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
| 5 |
|
nnex |
|- NN e. _V |
| 6 |
|
ovex |
|- ( R ^r n ) e. _V |
| 7 |
5 6
|
iunex |
|- U_ n e. NN ( R ^r n ) e. _V |
| 8 |
3 4 7
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
| 9 |
1 8
|
syl |
|- ( R e. V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
| 10 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 11 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 12 |
|
uzsplit |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) ) |
| 13 |
11 12
|
ax-mp |
|- ( ZZ>= ` 1 ) = ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) |
| 14 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 15 |
14
|
oveq2i |
|- ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 ) |
| 16 |
|
1z |
|- 1 e. ZZ |
| 17 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 18 |
16 17
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 19 |
15 18
|
eqtri |
|- ( 1 ... ( 2 - 1 ) ) = { 1 } |
| 20 |
19
|
uneq1i |
|- ( ( 1 ... ( 2 - 1 ) ) u. ( ZZ>= ` 2 ) ) = ( { 1 } u. ( ZZ>= ` 2 ) ) |
| 21 |
10 13 20
|
3eqtri |
|- NN = ( { 1 } u. ( ZZ>= ` 2 ) ) |
| 22 |
|
iuneq1 |
|- ( NN = ( { 1 } u. ( ZZ>= ` 2 ) ) -> U_ n e. NN ( R ^r n ) = U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) ) |
| 23 |
21 22
|
ax-mp |
|- U_ n e. NN ( R ^r n ) = U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) |
| 24 |
|
iunxun |
|- U_ n e. ( { 1 } u. ( ZZ>= ` 2 ) ) ( R ^r n ) = ( U_ n e. { 1 } ( R ^r n ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 25 |
|
1ex |
|- 1 e. _V |
| 26 |
|
oveq2 |
|- ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) ) |
| 27 |
25 26
|
iunxsn |
|- U_ n e. { 1 } ( R ^r n ) = ( R ^r 1 ) |
| 28 |
27
|
uneq1i |
|- ( U_ n e. { 1 } ( R ^r n ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) = ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 29 |
23 24 28
|
3eqtri |
|- U_ n e. NN ( R ^r n ) = ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 30 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 31 |
|
oveq1 |
|- ( r = R -> ( r ^r m ) = ( R ^r m ) ) |
| 32 |
31
|
iuneq2d |
|- ( r = R -> U_ m e. NN ( r ^r m ) = U_ m e. NN ( R ^r m ) ) |
| 33 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ m e. NN ( r ^r m ) ) |
| 34 |
|
ovex |
|- ( R ^r m ) e. _V |
| 35 |
5 34
|
iunex |
|- U_ m e. NN ( R ^r m ) e. _V |
| 36 |
32 33 35
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ m e. NN ( R ^r m ) ) |
| 37 |
1 36
|
syl |
|- ( R e. V -> ( t+ ` R ) = U_ m e. NN ( R ^r m ) ) |
| 38 |
37
|
coeq1d |
|- ( R e. V -> ( ( t+ ` R ) o. R ) = ( U_ m e. NN ( R ^r m ) o. R ) ) |
| 39 |
|
coiun1 |
|- ( U_ m e. NN ( R ^r m ) o. R ) = U_ m e. NN ( ( R ^r m ) o. R ) |
| 40 |
|
uz2m1nn |
|- ( n e. ( ZZ>= ` 2 ) -> ( n - 1 ) e. NN ) |
| 41 |
40
|
adantl |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( n - 1 ) e. NN ) |
| 42 |
|
eluzp1p1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( m + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 43 |
42 10
|
eleq2s |
|- ( m e. NN -> ( m + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 44 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 45 |
44
|
fveq2i |
|- ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` 2 ) |
| 46 |
43 45
|
eleqtrdi |
|- ( m e. NN -> ( m + 1 ) e. ( ZZ>= ` 2 ) ) |
| 47 |
46
|
adantl |
|- ( ( R e. V /\ m e. NN ) -> ( m + 1 ) e. ( ZZ>= ` 2 ) ) |
| 48 |
|
oveq2 |
|- ( m = ( n - 1 ) -> ( R ^r m ) = ( R ^r ( n - 1 ) ) ) |
| 49 |
48
|
coeq1d |
|- ( m = ( n - 1 ) -> ( ( R ^r m ) o. R ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
| 50 |
49
|
3ad2ant3 |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) /\ m = ( n - 1 ) ) -> ( ( R ^r m ) o. R ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
| 51 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
| 52 |
51
|
3ad2ant3 |
|- ( ( R e. V /\ m e. NN /\ n = ( m + 1 ) ) -> ( R ^r n ) = ( R ^r ( m + 1 ) ) ) |
| 53 |
|
relexpsucnnr |
|- ( ( R e. V /\ m e. NN ) -> ( R ^r ( m + 1 ) ) = ( ( R ^r m ) o. R ) ) |
| 54 |
53
|
eqcomd |
|- ( ( R e. V /\ m e. NN ) -> ( ( R ^r m ) o. R ) = ( R ^r ( m + 1 ) ) ) |
| 55 |
|
relexpsucnnr |
|- ( ( R e. V /\ ( n - 1 ) e. NN ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
| 56 |
40 55
|
sylan2 |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
| 57 |
|
eluzelcn |
|- ( n e. ( ZZ>= ` 2 ) -> n e. CC ) |
| 58 |
|
npcan1 |
|- ( n e. CC -> ( ( n - 1 ) + 1 ) = n ) |
| 59 |
|
oveq2 |
|- ( ( ( n - 1 ) + 1 ) = n -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( R ^r n ) ) |
| 60 |
57 58 59
|
3syl |
|- ( n e. ( ZZ>= ` 2 ) -> ( R ^r ( ( n - 1 ) + 1 ) ) = ( R ^r n ) ) |
| 61 |
60
|
eqeq1d |
|- ( n e. ( ZZ>= ` 2 ) -> ( ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) <-> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) ) |
| 62 |
61
|
adantl |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( ( R ^r ( ( n - 1 ) + 1 ) ) = ( ( R ^r ( n - 1 ) ) o. R ) <-> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) ) |
| 63 |
56 62
|
mpbid |
|- ( ( R e. V /\ n e. ( ZZ>= ` 2 ) ) -> ( R ^r n ) = ( ( R ^r ( n - 1 ) ) o. R ) ) |
| 64 |
41 47 50 52 54 63
|
cbviuneq12dv |
|- ( R e. V -> U_ m e. NN ( ( R ^r m ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 65 |
39 64
|
eqtrid |
|- ( R e. V -> ( U_ m e. NN ( R ^r m ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 66 |
38 65
|
eqtrd |
|- ( R e. V -> ( ( t+ ` R ) o. R ) = U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) |
| 67 |
66
|
eqcomd |
|- ( R e. V -> U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) = ( ( t+ ` R ) o. R ) ) |
| 68 |
30 67
|
uneq12d |
|- ( R e. V -> ( ( R ^r 1 ) u. U_ n e. ( ZZ>= ` 2 ) ( R ^r n ) ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |
| 69 |
29 68
|
eqtrid |
|- ( R e. V -> U_ n e. NN ( R ^r n ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |
| 70 |
9 69
|
eqtrd |
|- ( R e. V -> ( t+ ` R ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |