Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclfvdecoml | |- ( R e. V -> ( t+ ` R ) = ( R u. ( R o. ( t+ ` R ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvdecomr | |- ( R e. V -> ( t+ ` R ) = ( R u. ( ( t+ ` R ) o. R ) ) ) |
|
2 | trclfvcom | |- ( R e. V -> ( ( t+ ` R ) o. R ) = ( R o. ( t+ ` R ) ) ) |
|
3 | 2 | uneq2d | |- ( R e. V -> ( R u. ( ( t+ ` R ) o. R ) ) = ( R u. ( R o. ( t+ ` R ) ) ) ) |
4 | 1 3 | eqtrd | |- ( R e. V -> ( t+ ` R ) = ( R u. ( R o. ( t+ ` R ) ) ) ) |