Metamath Proof Explorer


Theorem dmtrclfvRP

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Assertion dmtrclfvRP
|- ( R e. V -> dom ( t+ ` R ) = dom R )

Proof

Step Hyp Ref Expression
1 trclfvdecomr
 |-  ( R e. V -> ( t+ ` R ) = ( R u. ( ( t+ ` R ) o. R ) ) )
2 1 dmeqd
 |-  ( R e. V -> dom ( t+ ` R ) = dom ( R u. ( ( t+ ` R ) o. R ) ) )
3 dmun
 |-  dom ( R u. ( ( t+ ` R ) o. R ) ) = ( dom R u. dom ( ( t+ ` R ) o. R ) )
4 dmcoss
 |-  dom ( ( t+ ` R ) o. R ) C_ dom R
5 ssequn2
 |-  ( dom ( ( t+ ` R ) o. R ) C_ dom R <-> ( dom R u. dom ( ( t+ ` R ) o. R ) ) = dom R )
6 4 5 mpbi
 |-  ( dom R u. dom ( ( t+ ` R ) o. R ) ) = dom R
7 3 6 eqtri
 |-  dom ( R u. ( ( t+ ` R ) o. R ) ) = dom R
8 2 7 eqtrdi
 |-  ( R e. V -> dom ( t+ ` R ) = dom R )