| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trclfvdecomr |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) ) |
| 2 |
1
|
dmeqd |
⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ 𝑅 ) = dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) ) |
| 3 |
|
dmun |
⊢ dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) |
| 4 |
|
dmcoss |
⊢ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ⊆ dom 𝑅 |
| 5 |
|
ssequn2 |
⊢ ( dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ⊆ dom 𝑅 ↔ ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅 ) |
| 6 |
4 5
|
mpbi |
⊢ ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅 |
| 7 |
3 6
|
eqtri |
⊢ dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅 |
| 8 |
2 7
|
eqtrdi |
⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 ) |