Metamath Proof Explorer


Theorem dmtrclfvRP

Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Assertion dmtrclfvRP ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 )

Proof

Step Hyp Ref Expression
1 trclfvdecomr ( 𝑅𝑉 → ( t+ ‘ 𝑅 ) = ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) )
2 1 dmeqd ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) = dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) )
3 dmun dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) )
4 dmcoss dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ⊆ dom 𝑅
5 ssequn2 ( dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ⊆ dom 𝑅 ↔ ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅 )
6 4 5 mpbi ( dom 𝑅 ∪ dom ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅
7 3 6 eqtri dom ( 𝑅 ∪ ( ( t+ ‘ 𝑅 ) ∘ 𝑅 ) ) = dom 𝑅
8 2 7 eqtrdi ( 𝑅𝑉 → dom ( t+ ‘ 𝑅 ) = dom 𝑅 )