Description: The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rntrclfvRP | ⊢ ( 𝑅 ∈ 𝑉 → ran ( t+ ‘ 𝑅 ) = ran 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn | ⊢ ran ( t+ ‘ 𝑅 ) = dom ◡ ( t+ ‘ 𝑅 ) | |
2 | cnvtrclfv | ⊢ ( 𝑅 ∈ 𝑉 → ◡ ( t+ ‘ 𝑅 ) = ( t+ ‘ ◡ 𝑅 ) ) | |
3 | 2 | dmeqd | ⊢ ( 𝑅 ∈ 𝑉 → dom ◡ ( t+ ‘ 𝑅 ) = dom ( t+ ‘ ◡ 𝑅 ) ) |
4 | cnvexg | ⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) | |
5 | dmtrclfv | ⊢ ( ◡ 𝑅 ∈ V → dom ( t+ ‘ ◡ 𝑅 ) = dom ◡ 𝑅 ) | |
6 | 4 5 | syl | ⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ ◡ 𝑅 ) = dom ◡ 𝑅 ) |
7 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
8 | 6 7 | eqtr4di | ⊢ ( 𝑅 ∈ 𝑉 → dom ( t+ ‘ ◡ 𝑅 ) = ran 𝑅 ) |
9 | 3 8 | eqtrd | ⊢ ( 𝑅 ∈ 𝑉 → dom ◡ ( t+ ‘ 𝑅 ) = ran 𝑅 ) |
10 | 1 9 | syl5eq | ⊢ ( 𝑅 ∈ 𝑉 → ran ( t+ ‘ 𝑅 ) = ran 𝑅 ) |