| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rn |
|- ran ( t+ ` R ) = dom `' ( t+ ` R ) |
| 2 |
|
cnvtrclfv |
|- ( R e. V -> `' ( t+ ` R ) = ( t+ ` `' R ) ) |
| 3 |
2
|
dmeqd |
|- ( R e. V -> dom `' ( t+ ` R ) = dom ( t+ ` `' R ) ) |
| 4 |
|
cnvexg |
|- ( R e. V -> `' R e. _V ) |
| 5 |
|
dmtrclfv |
|- ( `' R e. _V -> dom ( t+ ` `' R ) = dom `' R ) |
| 6 |
4 5
|
syl |
|- ( R e. V -> dom ( t+ ` `' R ) = dom `' R ) |
| 7 |
|
df-rn |
|- ran R = dom `' R |
| 8 |
6 7
|
eqtr4di |
|- ( R e. V -> dom ( t+ ` `' R ) = ran R ) |
| 9 |
3 8
|
eqtrd |
|- ( R e. V -> dom `' ( t+ ` R ) = ran R ) |
| 10 |
1 9
|
eqtrid |
|- ( R e. V -> ran ( t+ ` R ) = ran R ) |