Metamath Proof Explorer


Theorem cnvtrclfv

Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020)

Ref Expression
Assertion cnvtrclfv
|- ( R e. V -> `' ( t+ ` R ) = ( t+ ` `' R ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( R e. V -> R e. _V )
2 nnnn0
 |-  ( n e. NN -> n e. NN0 )
3 relexpcnv
 |-  ( ( n e. NN0 /\ R e. _V ) -> `' ( R ^r n ) = ( `' R ^r n ) )
4 2 3 sylan
 |-  ( ( n e. NN /\ R e. _V ) -> `' ( R ^r n ) = ( `' R ^r n ) )
5 4 expcom
 |-  ( R e. _V -> ( n e. NN -> `' ( R ^r n ) = ( `' R ^r n ) ) )
6 5 ralrimiv
 |-  ( R e. _V -> A. n e. NN `' ( R ^r n ) = ( `' R ^r n ) )
7 iuneq2
 |-  ( A. n e. NN `' ( R ^r n ) = ( `' R ^r n ) -> U_ n e. NN `' ( R ^r n ) = U_ n e. NN ( `' R ^r n ) )
8 6 7 syl
 |-  ( R e. _V -> U_ n e. NN `' ( R ^r n ) = U_ n e. NN ( `' R ^r n ) )
9 oveq1
 |-  ( r = R -> ( r ^r n ) = ( R ^r n ) )
10 9 iuneq2d
 |-  ( r = R -> U_ n e. NN ( r ^r n ) = U_ n e. NN ( R ^r n ) )
11 dftrcl3
 |-  t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) )
12 nnex
 |-  NN e. _V
13 ovex
 |-  ( R ^r n ) e. _V
14 12 13 iunex
 |-  U_ n e. NN ( R ^r n ) e. _V
15 10 11 14 fvmpt
 |-  ( R e. _V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) )
16 15 cnveqd
 |-  ( R e. _V -> `' ( t+ ` R ) = `' U_ n e. NN ( R ^r n ) )
17 cnviun
 |-  `' U_ n e. NN ( R ^r n ) = U_ n e. NN `' ( R ^r n )
18 16 17 eqtrdi
 |-  ( R e. _V -> `' ( t+ ` R ) = U_ n e. NN `' ( R ^r n ) )
19 cnvexg
 |-  ( R e. _V -> `' R e. _V )
20 oveq1
 |-  ( s = `' R -> ( s ^r n ) = ( `' R ^r n ) )
21 20 iuneq2d
 |-  ( s = `' R -> U_ n e. NN ( s ^r n ) = U_ n e. NN ( `' R ^r n ) )
22 dftrcl3
 |-  t+ = ( s e. _V |-> U_ n e. NN ( s ^r n ) )
23 ovex
 |-  ( `' R ^r n ) e. _V
24 12 23 iunex
 |-  U_ n e. NN ( `' R ^r n ) e. _V
25 21 22 24 fvmpt
 |-  ( `' R e. _V -> ( t+ ` `' R ) = U_ n e. NN ( `' R ^r n ) )
26 19 25 syl
 |-  ( R e. _V -> ( t+ ` `' R ) = U_ n e. NN ( `' R ^r n ) )
27 8 18 26 3eqtr4d
 |-  ( R e. _V -> `' ( t+ ` R ) = ( t+ ` `' R ) )
28 1 27 syl
 |-  ( R e. V -> `' ( t+ ` R ) = ( t+ ` `' R ) )