Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( R e. V -> R e. _V ) |
2 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
3 |
|
relexpcnv |
|- ( ( n e. NN0 /\ R e. _V ) -> `' ( R ^r n ) = ( `' R ^r n ) ) |
4 |
2 3
|
sylan |
|- ( ( n e. NN /\ R e. _V ) -> `' ( R ^r n ) = ( `' R ^r n ) ) |
5 |
4
|
expcom |
|- ( R e. _V -> ( n e. NN -> `' ( R ^r n ) = ( `' R ^r n ) ) ) |
6 |
5
|
ralrimiv |
|- ( R e. _V -> A. n e. NN `' ( R ^r n ) = ( `' R ^r n ) ) |
7 |
|
iuneq2 |
|- ( A. n e. NN `' ( R ^r n ) = ( `' R ^r n ) -> U_ n e. NN `' ( R ^r n ) = U_ n e. NN ( `' R ^r n ) ) |
8 |
6 7
|
syl |
|- ( R e. _V -> U_ n e. NN `' ( R ^r n ) = U_ n e. NN ( `' R ^r n ) ) |
9 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
10 |
9
|
iuneq2d |
|- ( r = R -> U_ n e. NN ( r ^r n ) = U_ n e. NN ( R ^r n ) ) |
11 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
12 |
|
nnex |
|- NN e. _V |
13 |
|
ovex |
|- ( R ^r n ) e. _V |
14 |
12 13
|
iunex |
|- U_ n e. NN ( R ^r n ) e. _V |
15 |
10 11 14
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
16 |
15
|
cnveqd |
|- ( R e. _V -> `' ( t+ ` R ) = `' U_ n e. NN ( R ^r n ) ) |
17 |
|
cnviun |
|- `' U_ n e. NN ( R ^r n ) = U_ n e. NN `' ( R ^r n ) |
18 |
16 17
|
eqtrdi |
|- ( R e. _V -> `' ( t+ ` R ) = U_ n e. NN `' ( R ^r n ) ) |
19 |
|
cnvexg |
|- ( R e. _V -> `' R e. _V ) |
20 |
|
oveq1 |
|- ( s = `' R -> ( s ^r n ) = ( `' R ^r n ) ) |
21 |
20
|
iuneq2d |
|- ( s = `' R -> U_ n e. NN ( s ^r n ) = U_ n e. NN ( `' R ^r n ) ) |
22 |
|
dftrcl3 |
|- t+ = ( s e. _V |-> U_ n e. NN ( s ^r n ) ) |
23 |
|
ovex |
|- ( `' R ^r n ) e. _V |
24 |
12 23
|
iunex |
|- U_ n e. NN ( `' R ^r n ) e. _V |
25 |
21 22 24
|
fvmpt |
|- ( `' R e. _V -> ( t+ ` `' R ) = U_ n e. NN ( `' R ^r n ) ) |
26 |
19 25
|
syl |
|- ( R e. _V -> ( t+ ` `' R ) = U_ n e. NN ( `' R ^r n ) ) |
27 |
8 18 26
|
3eqtr4d |
|- ( R e. _V -> `' ( t+ ` R ) = ( t+ ` `' R ) ) |
28 |
1 27
|
syl |
|- ( R e. V -> `' ( t+ ` R ) = ( t+ ` `' R ) ) |