Step |
Hyp |
Ref |
Expression |
1 |
|
trclfvdecoml |
|- ( R e. V -> ( t+ ` R ) = ( R u. ( R o. ( t+ ` R ) ) ) ) |
2 |
1
|
rneqd |
|- ( R e. V -> ran ( t+ ` R ) = ran ( R u. ( R o. ( t+ ` R ) ) ) ) |
3 |
|
rnun |
|- ran ( R u. ( R o. ( t+ ` R ) ) ) = ( ran R u. ran ( R o. ( t+ ` R ) ) ) |
4 |
|
rncoss |
|- ran ( R o. ( t+ ` R ) ) C_ ran R |
5 |
|
ssequn2 |
|- ( ran ( R o. ( t+ ` R ) ) C_ ran R <-> ( ran R u. ran ( R o. ( t+ ` R ) ) ) = ran R ) |
6 |
4 5
|
mpbi |
|- ( ran R u. ran ( R o. ( t+ ` R ) ) ) = ran R |
7 |
3 6
|
eqtri |
|- ran ( R u. ( R o. ( t+ ` R ) ) ) = ran R |
8 |
2 7
|
eqtrdi |
|- ( R e. V -> ran ( t+ ` R ) = ran R ) |