Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( R e. V -> R e. _V ) |
2 |
|
relexpsucnnr |
|- ( ( R e. _V /\ n e. NN ) -> ( R ^r ( n + 1 ) ) = ( ( R ^r n ) o. R ) ) |
3 |
|
relexpsucnnl |
|- ( ( R e. _V /\ n e. NN ) -> ( R ^r ( n + 1 ) ) = ( R o. ( R ^r n ) ) ) |
4 |
2 3
|
eqtr3d |
|- ( ( R e. _V /\ n e. NN ) -> ( ( R ^r n ) o. R ) = ( R o. ( R ^r n ) ) ) |
5 |
4
|
iuneq2dv |
|- ( R e. _V -> U_ n e. NN ( ( R ^r n ) o. R ) = U_ n e. NN ( R o. ( R ^r n ) ) ) |
6 |
|
oveq1 |
|- ( r = R -> ( r ^r n ) = ( R ^r n ) ) |
7 |
6
|
iuneq2d |
|- ( r = R -> U_ n e. NN ( r ^r n ) = U_ n e. NN ( R ^r n ) ) |
8 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
9 |
|
nnex |
|- NN e. _V |
10 |
|
ovex |
|- ( R ^r n ) e. _V |
11 |
9 10
|
iunex |
|- U_ n e. NN ( R ^r n ) e. _V |
12 |
7 8 11
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ n e. NN ( R ^r n ) ) |
13 |
12
|
coeq1d |
|- ( R e. _V -> ( ( t+ ` R ) o. R ) = ( U_ n e. NN ( R ^r n ) o. R ) ) |
14 |
|
coiun1 |
|- ( U_ n e. NN ( R ^r n ) o. R ) = U_ n e. NN ( ( R ^r n ) o. R ) |
15 |
13 14
|
eqtrdi |
|- ( R e. _V -> ( ( t+ ` R ) o. R ) = U_ n e. NN ( ( R ^r n ) o. R ) ) |
16 |
12
|
coeq2d |
|- ( R e. _V -> ( R o. ( t+ ` R ) ) = ( R o. U_ n e. NN ( R ^r n ) ) ) |
17 |
|
coiun |
|- ( R o. U_ n e. NN ( R ^r n ) ) = U_ n e. NN ( R o. ( R ^r n ) ) |
18 |
16 17
|
eqtrdi |
|- ( R e. _V -> ( R o. ( t+ ` R ) ) = U_ n e. NN ( R o. ( R ^r n ) ) ) |
19 |
5 15 18
|
3eqtr4d |
|- ( R e. _V -> ( ( t+ ` R ) o. R ) = ( R o. ( t+ ` R ) ) ) |
20 |
1 19
|
syl |
|- ( R e. V -> ( ( t+ ` R ) o. R ) = ( R o. ( t+ ` R ) ) ) |