Metamath Proof Explorer


Theorem trclfvcom

Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020)

Ref Expression
Assertion trclfvcom R V t+ R R = R t+ R

Proof

Step Hyp Ref Expression
1 elex R V R V
2 relexpsucnnr R V n R r n + 1 = R r n R
3 relexpsucnnl R V n R r n + 1 = R R r n
4 2 3 eqtr3d R V n R r n R = R R r n
5 4 iuneq2dv R V n R r n R = n R R r n
6 oveq1 r = R r r n = R r n
7 6 iuneq2d r = R n r r n = n R r n
8 dftrcl3 t+ = r V n r r n
9 nnex V
10 ovex R r n V
11 9 10 iunex n R r n V
12 7 8 11 fvmpt R V t+ R = n R r n
13 12 coeq1d R V t+ R R = n R r n R
14 coiun1 n R r n R = n R r n R
15 13 14 eqtrdi R V t+ R R = n R r n R
16 12 coeq2d R V R t+ R = R n R r n
17 coiun R n R r n = n R R r n
18 16 17 eqtrdi R V R t+ R = n R R r n
19 5 15 18 3eqtr4d R V t+ R R = R t+ R
20 1 19 syl R V t+ R R = R t+ R