Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbviuneq12dv.xel | |- ( ( ph /\ y e. C ) -> X e. A ) |
|
cbviuneq12dv.yel | |- ( ( ph /\ x e. A ) -> Y e. C ) |
||
cbviuneq12dv.xsub | |- ( ( ph /\ y e. C /\ x = X ) -> B = F ) |
||
cbviuneq12dv.ysub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
||
cbviuneq12dv.eq1 | |- ( ( ph /\ x e. A ) -> B = G ) |
||
cbviuneq12dv.eq2 | |- ( ( ph /\ y e. C ) -> D = F ) |
||
Assertion | cbviuneq12dv | |- ( ph -> U_ x e. A B = U_ y e. C D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviuneq12dv.xel | |- ( ( ph /\ y e. C ) -> X e. A ) |
|
2 | cbviuneq12dv.yel | |- ( ( ph /\ x e. A ) -> Y e. C ) |
|
3 | cbviuneq12dv.xsub | |- ( ( ph /\ y e. C /\ x = X ) -> B = F ) |
|
4 | cbviuneq12dv.ysub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
|
5 | cbviuneq12dv.eq1 | |- ( ( ph /\ x e. A ) -> B = G ) |
|
6 | cbviuneq12dv.eq2 | |- ( ( ph /\ y e. C ) -> D = F ) |
|
7 | nfv | |- F/ x ph |
|
8 | nfv | |- F/ y ph |
|
9 | nfcv | |- F/_ x X |
|
10 | nfcv | |- F/_ y Y |
|
11 | nfcv | |- F/_ x A |
|
12 | nfcv | |- F/_ y A |
|
13 | nfcv | |- F/_ y B |
|
14 | nfcv | |- F/_ x C |
|
15 | nfcv | |- F/_ y C |
|
16 | nfcv | |- F/_ x D |
|
17 | nfcv | |- F/_ x F |
|
18 | nfcv | |- F/_ y G |
|
19 | 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 | cbviuneq12df | |- ( ph -> U_ x e. A B = U_ y e. C D ) |