Metamath Proof Explorer


Theorem cbviuneq12dv

Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses cbviuneq12dv.xel
|- ( ( ph /\ y e. C ) -> X e. A )
cbviuneq12dv.yel
|- ( ( ph /\ x e. A ) -> Y e. C )
cbviuneq12dv.xsub
|- ( ( ph /\ y e. C /\ x = X ) -> B = F )
cbviuneq12dv.ysub
|- ( ( ph /\ x e. A /\ y = Y ) -> D = G )
cbviuneq12dv.eq1
|- ( ( ph /\ x e. A ) -> B = G )
cbviuneq12dv.eq2
|- ( ( ph /\ y e. C ) -> D = F )
Assertion cbviuneq12dv
|- ( ph -> U_ x e. A B = U_ y e. C D )

Proof

Step Hyp Ref Expression
1 cbviuneq12dv.xel
 |-  ( ( ph /\ y e. C ) -> X e. A )
2 cbviuneq12dv.yel
 |-  ( ( ph /\ x e. A ) -> Y e. C )
3 cbviuneq12dv.xsub
 |-  ( ( ph /\ y e. C /\ x = X ) -> B = F )
4 cbviuneq12dv.ysub
 |-  ( ( ph /\ x e. A /\ y = Y ) -> D = G )
5 cbviuneq12dv.eq1
 |-  ( ( ph /\ x e. A ) -> B = G )
6 cbviuneq12dv.eq2
 |-  ( ( ph /\ y e. C ) -> D = F )
7 nfv
 |-  F/ x ph
8 nfv
 |-  F/ y ph
9 nfcv
 |-  F/_ x X
10 nfcv
 |-  F/_ y Y
11 nfcv
 |-  F/_ x A
12 nfcv
 |-  F/_ y A
13 nfcv
 |-  F/_ y B
14 nfcv
 |-  F/_ x C
15 nfcv
 |-  F/_ y C
16 nfcv
 |-  F/_ x D
17 nfcv
 |-  F/_ x F
18 nfcv
 |-  F/_ y G
19 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 cbviuneq12df
 |-  ( ph -> U_ x e. A B = U_ y e. C D )