Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviuneq12dv.xel | |- ( ( ph /\ y e. C ) -> X e. A ) |
|
| cbviuneq12dv.yel | |- ( ( ph /\ x e. A ) -> Y e. C ) |
||
| cbviuneq12dv.xsub | |- ( ( ph /\ y e. C /\ x = X ) -> B = F ) |
||
| cbviuneq12dv.ysub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
||
| cbviuneq12dv.eq1 | |- ( ( ph /\ x e. A ) -> B = G ) |
||
| cbviuneq12dv.eq2 | |- ( ( ph /\ y e. C ) -> D = F ) |
||
| Assertion | cbviuneq12dv | |- ( ph -> U_ x e. A B = U_ y e. C D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviuneq12dv.xel | |- ( ( ph /\ y e. C ) -> X e. A ) |
|
| 2 | cbviuneq12dv.yel | |- ( ( ph /\ x e. A ) -> Y e. C ) |
|
| 3 | cbviuneq12dv.xsub | |- ( ( ph /\ y e. C /\ x = X ) -> B = F ) |
|
| 4 | cbviuneq12dv.ysub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
|
| 5 | cbviuneq12dv.eq1 | |- ( ( ph /\ x e. A ) -> B = G ) |
|
| 6 | cbviuneq12dv.eq2 | |- ( ( ph /\ y e. C ) -> D = F ) |
|
| 7 | nfv | |- F/ x ph |
|
| 8 | nfv | |- F/ y ph |
|
| 9 | nfcv | |- F/_ x X |
|
| 10 | nfcv | |- F/_ y Y |
|
| 11 | nfcv | |- F/_ x A |
|
| 12 | nfcv | |- F/_ y A |
|
| 13 | nfcv | |- F/_ y B |
|
| 14 | nfcv | |- F/_ x C |
|
| 15 | nfcv | |- F/_ y C |
|
| 16 | nfcv | |- F/_ x D |
|
| 17 | nfcv | |- F/_ x F |
|
| 18 | nfcv | |- F/_ y G |
|
| 19 | 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 | cbviuneq12df | |- ( ph -> U_ x e. A B = U_ y e. C D ) |