Metamath Proof Explorer


Theorem cbviuneq12df

Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses cbviuneq12df.xph
|- F/ x ph
cbviuneq12df.yph
|- F/ y ph
cbviuneq12df.x
|- F/_ x X
cbviuneq12df.y
|- F/_ y Y
cbviuneq12df.xa
|- F/_ x A
cbviuneq12df.ya
|- F/_ y A
cbviuneq12df.b
|- F/_ y B
cbviuneq12df.xc
|- F/_ x C
cbviuneq12df.yc
|- F/_ y C
cbviuneq12df.d
|- F/_ x D
cbviuneq12df.f
|- F/_ x F
cbviuneq12df.g
|- F/_ y G
cbviuneq12df.xel
|- ( ( ph /\ y e. C ) -> X e. A )
cbviuneq12df.yel
|- ( ( ph /\ x e. A ) -> Y e. C )
cbviuneq12df.xsub
|- ( ( ph /\ y e. C /\ x = X ) -> B = F )
cbviuneq12df.ysub
|- ( ( ph /\ x e. A /\ y = Y ) -> D = G )
cbviuneq12df.eq1
|- ( ( ph /\ x e. A ) -> B = G )
cbviuneq12df.eq2
|- ( ( ph /\ y e. C ) -> D = F )
Assertion cbviuneq12df
|- ( ph -> U_ x e. A B = U_ y e. C D )

Proof

Step Hyp Ref Expression
1 cbviuneq12df.xph
 |-  F/ x ph
2 cbviuneq12df.yph
 |-  F/ y ph
3 cbviuneq12df.x
 |-  F/_ x X
4 cbviuneq12df.y
 |-  F/_ y Y
5 cbviuneq12df.xa
 |-  F/_ x A
6 cbviuneq12df.ya
 |-  F/_ y A
7 cbviuneq12df.b
 |-  F/_ y B
8 cbviuneq12df.xc
 |-  F/_ x C
9 cbviuneq12df.yc
 |-  F/_ y C
10 cbviuneq12df.d
 |-  F/_ x D
11 cbviuneq12df.f
 |-  F/_ x F
12 cbviuneq12df.g
 |-  F/_ y G
13 cbviuneq12df.xel
 |-  ( ( ph /\ y e. C ) -> X e. A )
14 cbviuneq12df.yel
 |-  ( ( ph /\ x e. A ) -> Y e. C )
15 cbviuneq12df.xsub
 |-  ( ( ph /\ y e. C /\ x = X ) -> B = F )
16 cbviuneq12df.ysub
 |-  ( ( ph /\ x e. A /\ y = Y ) -> D = G )
17 cbviuneq12df.eq1
 |-  ( ( ph /\ x e. A ) -> B = G )
18 cbviuneq12df.eq2
 |-  ( ( ph /\ y e. C ) -> D = F )
19 eqimss
 |-  ( B = G -> B C_ G )
20 17 19 syl
 |-  ( ( ph /\ x e. A ) -> B C_ G )
21 1 2 4 6 7 8 9 10 12 14 16 20 ss2iundf
 |-  ( ph -> U_ x e. A B C_ U_ y e. C D )
22 eqimss
 |-  ( D = F -> D C_ F )
23 18 22 syl
 |-  ( ( ph /\ y e. C ) -> D C_ F )
24 2 1 3 8 10 6 5 7 11 13 15 23 ss2iundf
 |-  ( ph -> U_ y e. C D C_ U_ x e. A B )
25 21 24 eqssd
 |-  ( ph -> U_ x e. A B = U_ y e. C D )