Metamath Proof Explorer


Theorem cbviuneq12df

Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses cbviuneq12df.xph x φ
cbviuneq12df.yph y φ
cbviuneq12df.x _ x X
cbviuneq12df.y _ y Y
cbviuneq12df.xa _ x A
cbviuneq12df.ya _ y A
cbviuneq12df.b _ y B
cbviuneq12df.xc _ x C
cbviuneq12df.yc _ y C
cbviuneq12df.d _ x D
cbviuneq12df.f _ x F
cbviuneq12df.g _ y G
cbviuneq12df.xel φ y C X A
cbviuneq12df.yel φ x A Y C
cbviuneq12df.xsub φ y C x = X B = F
cbviuneq12df.ysub φ x A y = Y D = G
cbviuneq12df.eq1 φ x A B = G
cbviuneq12df.eq2 φ y C D = F
Assertion cbviuneq12df φ x A B = y C D

Proof

Step Hyp Ref Expression
1 cbviuneq12df.xph x φ
2 cbviuneq12df.yph y φ
3 cbviuneq12df.x _ x X
4 cbviuneq12df.y _ y Y
5 cbviuneq12df.xa _ x A
6 cbviuneq12df.ya _ y A
7 cbviuneq12df.b _ y B
8 cbviuneq12df.xc _ x C
9 cbviuneq12df.yc _ y C
10 cbviuneq12df.d _ x D
11 cbviuneq12df.f _ x F
12 cbviuneq12df.g _ y G
13 cbviuneq12df.xel φ y C X A
14 cbviuneq12df.yel φ x A Y C
15 cbviuneq12df.xsub φ y C x = X B = F
16 cbviuneq12df.ysub φ x A y = Y D = G
17 cbviuneq12df.eq1 φ x A B = G
18 cbviuneq12df.eq2 φ y C D = F
19 eqimss B = G B G
20 17 19 syl φ x A B G
21 1 2 4 6 7 8 9 10 12 14 16 20 ss2iundf φ x A B y C D
22 eqimss D = F D F
23 18 22 syl φ y C D F
24 2 1 3 8 10 6 5 7 11 13 15 23 ss2iundf φ y C D x A B
25 21 24 eqssd φ x A B = y C D