Metamath Proof Explorer


Theorem cbviuneq12dv

Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses cbviuneq12dv.xel φ y C X A
cbviuneq12dv.yel φ x A Y C
cbviuneq12dv.xsub φ y C x = X B = F
cbviuneq12dv.ysub φ x A y = Y D = G
cbviuneq12dv.eq1 φ x A B = G
cbviuneq12dv.eq2 φ y C D = F
Assertion cbviuneq12dv φ x A B = y C D

Proof

Step Hyp Ref Expression
1 cbviuneq12dv.xel φ y C X A
2 cbviuneq12dv.yel φ x A Y C
3 cbviuneq12dv.xsub φ y C x = X B = F
4 cbviuneq12dv.ysub φ x A y = Y D = G
5 cbviuneq12dv.eq1 φ x A B = G
6 cbviuneq12dv.eq2 φ y C D = F
7 nfv x φ
8 nfv y φ
9 nfcv _ x X
10 nfcv _ y Y
11 nfcv _ x A
12 nfcv _ y A
13 nfcv _ y B
14 nfcv _ x C
15 nfcv _ y C
16 nfcv _ x D
17 nfcv _ x F
18 nfcv _ y G
19 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 cbviuneq12df φ x A B = y C D