Metamath Proof Explorer


Theorem cbviuneq12dv

Description: Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses cbviuneq12dv.xel φyCXA
cbviuneq12dv.yel φxAYC
cbviuneq12dv.xsub φyCx=XB=F
cbviuneq12dv.ysub φxAy=YD=G
cbviuneq12dv.eq1 φxAB=G
cbviuneq12dv.eq2 φyCD=F
Assertion cbviuneq12dv φxAB=yCD

Proof

Step Hyp Ref Expression
1 cbviuneq12dv.xel φyCXA
2 cbviuneq12dv.yel φxAYC
3 cbviuneq12dv.xsub φyCx=XB=F
4 cbviuneq12dv.ysub φxAy=YD=G
5 cbviuneq12dv.eq1 φxAB=G
6 cbviuneq12dv.eq2 φyCD=F
7 nfv xφ
8 nfv yφ
9 nfcv _xX
10 nfcv _yY
11 nfcv _xA
12 nfcv _yA
13 nfcv _yB
14 nfcv _xC
15 nfcv _yC
16 nfcv _xD
17 nfcv _xF
18 nfcv _yG
19 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 cbviuneq12df φxAB=yCD