| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbviuneq12dv.xel |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
| 2 |
|
cbviuneq12dv.yel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) |
| 3 |
|
cbviuneq12dv.xsub |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋 ) → 𝐵 = 𝐹 ) |
| 4 |
|
cbviuneq12dv.ysub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
| 5 |
|
cbviuneq12dv.eq1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐺 ) |
| 6 |
|
cbviuneq12dv.eq2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐷 = 𝐹 ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑌 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐺 |
| 19 |
7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6
|
cbviuneq12df |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷 ) |