Step |
Hyp |
Ref |
Expression |
1 |
|
conrel1d.a |
⊢ ( 𝜑 → ◡ 𝐴 = ∅ ) |
2 |
|
incom |
⊢ ( dom 𝐴 ∩ ran 𝐵 ) = ( ran 𝐵 ∩ dom 𝐴 ) |
3 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
4 |
1
|
rneqd |
⊢ ( 𝜑 → ran ◡ 𝐴 = ran ∅ ) |
5 |
|
rn0 |
⊢ ran ∅ = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( 𝜑 → ran ◡ 𝐴 = ∅ ) |
7 |
3 6
|
syl5eq |
⊢ ( 𝜑 → dom 𝐴 = ∅ ) |
8 |
|
ineq2 |
⊢ ( dom 𝐴 = ∅ → ( ran 𝐵 ∩ dom 𝐴 ) = ( ran 𝐵 ∩ ∅ ) ) |
9 |
|
in0 |
⊢ ( ran 𝐵 ∩ ∅ ) = ∅ |
10 |
8 9
|
eqtrdi |
⊢ ( dom 𝐴 = ∅ → ( ran 𝐵 ∩ dom 𝐴 ) = ∅ ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ( ran 𝐵 ∩ dom 𝐴 ) = ∅ ) |
12 |
2 11
|
syl5eq |
⊢ ( 𝜑 → ( dom 𝐴 ∩ ran 𝐵 ) = ∅ ) |
13 |
12
|
coemptyd |
⊢ ( 𝜑 → ( 𝐴 ∘ 𝐵 ) = ∅ ) |