Step |
Hyp |
Ref |
Expression |
1 |
|
conrel1d.a |
|- ( ph -> `' A = (/) ) |
2 |
|
incom |
|- ( dom A i^i ran B ) = ( ran B i^i dom A ) |
3 |
|
dfdm4 |
|- dom A = ran `' A |
4 |
1
|
rneqd |
|- ( ph -> ran `' A = ran (/) ) |
5 |
|
rn0 |
|- ran (/) = (/) |
6 |
4 5
|
eqtrdi |
|- ( ph -> ran `' A = (/) ) |
7 |
3 6
|
syl5eq |
|- ( ph -> dom A = (/) ) |
8 |
|
ineq2 |
|- ( dom A = (/) -> ( ran B i^i dom A ) = ( ran B i^i (/) ) ) |
9 |
|
in0 |
|- ( ran B i^i (/) ) = (/) |
10 |
8 9
|
eqtrdi |
|- ( dom A = (/) -> ( ran B i^i dom A ) = (/) ) |
11 |
7 10
|
syl |
|- ( ph -> ( ran B i^i dom A ) = (/) ) |
12 |
2 11
|
syl5eq |
|- ( ph -> ( dom A i^i ran B ) = (/) ) |
13 |
12
|
coemptyd |
|- ( ph -> ( A o. B ) = (/) ) |