Description: Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coemptyd.1 | |- ( ph -> ( dom A i^i ran B ) = (/) ) |
|
| Assertion | coemptyd | |- ( ph -> ( A o. B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coemptyd.1 | |- ( ph -> ( dom A i^i ran B ) = (/) ) |
|
| 2 | coeq0 | |- ( ( A o. B ) = (/) <-> ( dom A i^i ran B ) = (/) ) |
|
| 3 | 1 2 | sylibr | |- ( ph -> ( A o. B ) = (/) ) |