Metamath Proof Explorer


Theorem coemptyd

Description: Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypothesis coemptyd.1 φdomAranB=
Assertion coemptyd φAB=

Proof

Step Hyp Ref Expression
1 coemptyd.1 φdomAranB=
2 coeq0 AB=domAranB=
3 1 2 sylibr φAB=