Step |
Hyp |
Ref |
Expression |
1 |
|
conrel1d.a |
|- ( ph -> `' A = (/) ) |
2 |
|
df-rn |
|- ran A = dom `' A |
3 |
2
|
ineq2i |
|- ( dom B i^i ran A ) = ( dom B i^i dom `' A ) |
4 |
3
|
a1i |
|- ( ph -> ( dom B i^i ran A ) = ( dom B i^i dom `' A ) ) |
5 |
1
|
dmeqd |
|- ( ph -> dom `' A = dom (/) ) |
6 |
5
|
ineq2d |
|- ( ph -> ( dom B i^i dom `' A ) = ( dom B i^i dom (/) ) ) |
7 |
|
dm0 |
|- dom (/) = (/) |
8 |
7
|
ineq2i |
|- ( dom B i^i dom (/) ) = ( dom B i^i (/) ) |
9 |
|
in0 |
|- ( dom B i^i (/) ) = (/) |
10 |
8 9
|
eqtri |
|- ( dom B i^i dom (/) ) = (/) |
11 |
10
|
a1i |
|- ( ph -> ( dom B i^i dom (/) ) = (/) ) |
12 |
4 6 11
|
3eqtrd |
|- ( ph -> ( dom B i^i ran A ) = (/) ) |
13 |
12
|
coemptyd |
|- ( ph -> ( B o. A ) = (/) ) |