Metamath Proof Explorer


Theorem conrel2d

Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypothesis conrel1d.a
|- ( ph -> `' A = (/) )
Assertion conrel2d
|- ( ph -> ( B o. A ) = (/) )

Proof

Step Hyp Ref Expression
1 conrel1d.a
 |-  ( ph -> `' A = (/) )
2 df-rn
 |-  ran A = dom `' A
3 2 ineq2i
 |-  ( dom B i^i ran A ) = ( dom B i^i dom `' A )
4 3 a1i
 |-  ( ph -> ( dom B i^i ran A ) = ( dom B i^i dom `' A ) )
5 1 dmeqd
 |-  ( ph -> dom `' A = dom (/) )
6 5 ineq2d
 |-  ( ph -> ( dom B i^i dom `' A ) = ( dom B i^i dom (/) ) )
7 dm0
 |-  dom (/) = (/)
8 7 ineq2i
 |-  ( dom B i^i dom (/) ) = ( dom B i^i (/) )
9 in0
 |-  ( dom B i^i (/) ) = (/)
10 8 9 eqtri
 |-  ( dom B i^i dom (/) ) = (/)
11 10 a1i
 |-  ( ph -> ( dom B i^i dom (/) ) = (/) )
12 4 6 11 3eqtrd
 |-  ( ph -> ( dom B i^i ran A ) = (/) )
13 12 coemptyd
 |-  ( ph -> ( B o. A ) = (/) )