Metamath Proof Explorer


Theorem conrel2d

Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypothesis conrel1d.a φ A -1 =
Assertion conrel2d φ B A =

Proof

Step Hyp Ref Expression
1 conrel1d.a φ A -1 =
2 df-rn ran A = dom A -1
3 2 ineq2i dom B ran A = dom B dom A -1
4 3 a1i φ dom B ran A = dom B dom A -1
5 1 dmeqd φ dom A -1 = dom
6 5 ineq2d φ dom B dom A -1 = dom B dom
7 dm0 dom =
8 7 ineq2i dom B dom = dom B
9 in0 dom B =
10 8 9 eqtri dom B dom =
11 10 a1i φ dom B dom =
12 4 6 11 3eqtrd φ dom B ran A =
13 12 coemptyd φ B A =