| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conrel1d.a |
⊢ ( 𝜑 → ◡ 𝐴 = ∅ ) |
| 2 |
|
df-rn |
⊢ ran 𝐴 = dom ◡ 𝐴 |
| 3 |
2
|
ineq2i |
⊢ ( dom 𝐵 ∩ ran 𝐴 ) = ( dom 𝐵 ∩ dom ◡ 𝐴 ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → ( dom 𝐵 ∩ ran 𝐴 ) = ( dom 𝐵 ∩ dom ◡ 𝐴 ) ) |
| 5 |
1
|
dmeqd |
⊢ ( 𝜑 → dom ◡ 𝐴 = dom ∅ ) |
| 6 |
5
|
ineq2d |
⊢ ( 𝜑 → ( dom 𝐵 ∩ dom ◡ 𝐴 ) = ( dom 𝐵 ∩ dom ∅ ) ) |
| 7 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 8 |
7
|
ineq2i |
⊢ ( dom 𝐵 ∩ dom ∅ ) = ( dom 𝐵 ∩ ∅ ) |
| 9 |
|
in0 |
⊢ ( dom 𝐵 ∩ ∅ ) = ∅ |
| 10 |
8 9
|
eqtri |
⊢ ( dom 𝐵 ∩ dom ∅ ) = ∅ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( dom 𝐵 ∩ dom ∅ ) = ∅ ) |
| 12 |
4 6 11
|
3eqtrd |
⊢ ( 𝜑 → ( dom 𝐵 ∩ ran 𝐴 ) = ∅ ) |
| 13 |
12
|
coemptyd |
⊢ ( 𝜑 → ( 𝐵 ∘ 𝐴 ) = ∅ ) |