Metamath Proof Explorer


Theorem conrel2d

Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypothesis conrel1d.a ( 𝜑 𝐴 = ∅ )
Assertion conrel2d ( 𝜑 → ( 𝐵𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 conrel1d.a ( 𝜑 𝐴 = ∅ )
2 df-rn ran 𝐴 = dom 𝐴
3 2 ineq2i ( dom 𝐵 ∩ ran 𝐴 ) = ( dom 𝐵 ∩ dom 𝐴 )
4 3 a1i ( 𝜑 → ( dom 𝐵 ∩ ran 𝐴 ) = ( dom 𝐵 ∩ dom 𝐴 ) )
5 1 dmeqd ( 𝜑 → dom 𝐴 = dom ∅ )
6 5 ineq2d ( 𝜑 → ( dom 𝐵 ∩ dom 𝐴 ) = ( dom 𝐵 ∩ dom ∅ ) )
7 dm0 dom ∅ = ∅
8 7 ineq2i ( dom 𝐵 ∩ dom ∅ ) = ( dom 𝐵 ∩ ∅ )
9 in0 ( dom 𝐵 ∩ ∅ ) = ∅
10 8 9 eqtri ( dom 𝐵 ∩ dom ∅ ) = ∅
11 10 a1i ( 𝜑 → ( dom 𝐵 ∩ dom ∅ ) = ∅ )
12 4 6 11 3eqtrd ( 𝜑 → ( dom 𝐵 ∩ ran 𝐴 ) = ∅ )
13 12 coemptyd ( 𝜑 → ( 𝐵𝐴 ) = ∅ )