Step |
Hyp |
Ref |
Expression |
1 |
|
cbviuneq12df.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cbviuneq12df.yph |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
cbviuneq12df.x |
⊢ Ⅎ 𝑥 𝑋 |
4 |
|
cbviuneq12df.y |
⊢ Ⅎ 𝑦 𝑌 |
5 |
|
cbviuneq12df.xa |
⊢ Ⅎ 𝑥 𝐴 |
6 |
|
cbviuneq12df.ya |
⊢ Ⅎ 𝑦 𝐴 |
7 |
|
cbviuneq12df.b |
⊢ Ⅎ 𝑦 𝐵 |
8 |
|
cbviuneq12df.xc |
⊢ Ⅎ 𝑥 𝐶 |
9 |
|
cbviuneq12df.yc |
⊢ Ⅎ 𝑦 𝐶 |
10 |
|
cbviuneq12df.d |
⊢ Ⅎ 𝑥 𝐷 |
11 |
|
cbviuneq12df.f |
⊢ Ⅎ 𝑥 𝐹 |
12 |
|
cbviuneq12df.g |
⊢ Ⅎ 𝑦 𝐺 |
13 |
|
cbviuneq12df.xel |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
14 |
|
cbviuneq12df.yel |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) |
15 |
|
cbviuneq12df.xsub |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋 ) → 𝐵 = 𝐹 ) |
16 |
|
cbviuneq12df.ysub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
17 |
|
cbviuneq12df.eq1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐺 ) |
18 |
|
cbviuneq12df.eq2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐷 = 𝐹 ) |
19 |
|
eqimss |
⊢ ( 𝐵 = 𝐺 → 𝐵 ⊆ 𝐺 ) |
20 |
17 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) |
21 |
1 2 4 6 7 8 9 10 12 14 16 20
|
ss2iundf |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
22 |
|
eqimss |
⊢ ( 𝐷 = 𝐹 → 𝐷 ⊆ 𝐹 ) |
23 |
18 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐷 ⊆ 𝐹 ) |
24 |
2 1 3 8 10 6 5 7 11 13 15 23
|
ss2iundf |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐶 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
25 |
21 24
|
eqssd |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷 ) |