| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ss2iundf.xph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
ss2iundf.yph |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
ss2iundf.y |
⊢ Ⅎ 𝑦 𝑌 |
| 4 |
|
ss2iundf.a |
⊢ Ⅎ 𝑦 𝐴 |
| 5 |
|
ss2iundf.b |
⊢ Ⅎ 𝑦 𝐵 |
| 6 |
|
ss2iundf.xc |
⊢ Ⅎ 𝑥 𝐶 |
| 7 |
|
ss2iundf.yc |
⊢ Ⅎ 𝑦 𝐶 |
| 8 |
|
ss2iundf.d |
⊢ Ⅎ 𝑥 𝐷 |
| 9 |
|
ss2iundf.g |
⊢ Ⅎ 𝑦 𝐺 |
| 10 |
|
ss2iundf.el |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) |
| 11 |
|
ss2iundf.sub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
| 12 |
|
ss2iundf.ss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) |
| 13 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) ) |
| 14 |
4
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 15 |
2 14
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
| 17 |
16
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝑦 ∈ 𝐶 ↔ 𝑌 ∈ 𝐶 ) ) |
| 18 |
17
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝑌 ∈ 𝐶 → 𝑦 ∈ 𝐶 ) ) |
| 19 |
11
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → ( 𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺 ) ) |
| 20 |
19
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺 ) ) |
| 21 |
20
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ¬ 𝐵 ⊆ 𝐷 ↔ ¬ 𝐵 ⊆ 𝐺 ) ) |
| 22 |
21
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺 ) ) |
| 23 |
18 22
|
imim12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) |
| 24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
| 25 |
15 24
|
alrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
| 26 |
3 7
|
nfel |
⊢ Ⅎ 𝑦 𝑌 ∈ 𝐶 |
| 27 |
5 9
|
nfss |
⊢ Ⅎ 𝑦 𝐵 ⊆ 𝐺 |
| 28 |
27
|
nfn |
⊢ Ⅎ 𝑦 ¬ 𝐵 ⊆ 𝐺 |
| 29 |
26 28
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) |
| 30 |
29 3
|
spcimgfi1 |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) → ( 𝑌 ∈ 𝐶 → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
| 31 |
25 10 30
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) |
| 32 |
10 31
|
mpid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ¬ 𝐵 ⊆ 𝐺 ) ) |
| 33 |
13 32
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺 ) ) |
| 34 |
33
|
con2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐺 → ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ) ) |
| 35 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ↔ ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ) |
| 36 |
34 35
|
imbitrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐺 → ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) ) |
| 37 |
12 36
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) |
| 38 |
1 37
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) |
| 39 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
| 40 |
39
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∃ 𝑦 ∈ 𝐶 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
| 41 |
5
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
| 42 |
41
|
r19.37 |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
| 43 |
40 42
|
syl |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
| 44 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) |
| 45 |
43 44
|
imbitrrdi |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
| 46 |
45
|
ssrdv |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
| 47 |
46
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
| 48 |
6 8
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑦 ∈ 𝐶 𝐷 |
| 49 |
48
|
iunssf |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
| 50 |
47 49
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
| 51 |
38 50
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |