Step |
Hyp |
Ref |
Expression |
1 |
|
ss2iundf.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
ss2iundf.yph |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
ss2iundf.y |
⊢ Ⅎ 𝑦 𝑌 |
4 |
|
ss2iundf.a |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
ss2iundf.b |
⊢ Ⅎ 𝑦 𝐵 |
6 |
|
ss2iundf.xc |
⊢ Ⅎ 𝑥 𝐶 |
7 |
|
ss2iundf.yc |
⊢ Ⅎ 𝑦 𝐶 |
8 |
|
ss2iundf.d |
⊢ Ⅎ 𝑥 𝐷 |
9 |
|
ss2iundf.g |
⊢ Ⅎ 𝑦 𝐺 |
10 |
|
ss2iundf.el |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) |
11 |
|
ss2iundf.sub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
12 |
|
ss2iundf.ss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) |
13 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) ) |
14 |
4
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
15 |
2 14
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
17 |
16
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝑦 ∈ 𝐶 ↔ 𝑌 ∈ 𝐶 ) ) |
18 |
17
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝑌 ∈ 𝐶 → 𝑦 ∈ 𝐶 ) ) |
19 |
11
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → ( 𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺 ) ) |
20 |
19
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( 𝐵 ⊆ 𝐷 ↔ 𝐵 ⊆ 𝐺 ) ) |
21 |
20
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ¬ 𝐵 ⊆ 𝐷 ↔ ¬ 𝐵 ⊆ 𝐺 ) ) |
22 |
21
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺 ) ) |
23 |
18 22
|
imim12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = 𝑌 ) → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) |
24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
25 |
15 24
|
alrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
26 |
3 7
|
nfel |
⊢ Ⅎ 𝑦 𝑌 ∈ 𝐶 |
27 |
5 9
|
nfss |
⊢ Ⅎ 𝑦 𝐵 ⊆ 𝐺 |
28 |
27
|
nfn |
⊢ Ⅎ 𝑦 ¬ 𝐵 ⊆ 𝐺 |
29 |
26 28
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) |
30 |
29 3
|
spcimgft |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑌 → ( ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) → ( 𝑌 ∈ 𝐶 → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) ) |
31 |
25 10 30
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ( 𝑌 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐺 ) ) ) |
32 |
10 31
|
mpid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝐶 → ¬ 𝐵 ⊆ 𝐷 ) → ¬ 𝐵 ⊆ 𝐺 ) ) |
33 |
13 32
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 → ¬ 𝐵 ⊆ 𝐺 ) ) |
34 |
33
|
con2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐺 → ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ) ) |
35 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ↔ ¬ ∀ 𝑦 ∈ 𝐶 ¬ 𝐵 ⊆ 𝐷 ) |
36 |
34 35
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐺 → ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) ) |
37 |
12 36
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) |
38 |
37
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) ) |
39 |
1 38
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 ) |
40 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
41 |
40
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∃ 𝑦 ∈ 𝐶 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
42 |
5
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
43 |
42
|
r19.37 |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
44 |
41 43
|
syl |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
45 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) |
46 |
44 45
|
syl6ibr |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
47 |
46
|
ssrdv |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
48 |
47
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
49 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } |
50 |
49
|
sseq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
51 |
|
abss |
⊢ ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
52 |
|
dfss2 |
⊢ ( 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
53 |
52
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
54 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
55 |
6 8
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑦 ∈ 𝐶 𝐷 |
56 |
55
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 |
57 |
56
|
r19.23 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
58 |
57
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ) |
59 |
53 54 58
|
3bitrri |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → 𝑧 ∈ ∪ 𝑦 ∈ 𝐶 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
60 |
50 51 59
|
3bitri |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
61 |
48 60
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝐵 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
62 |
39 61
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |