Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ss2iundv.el | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) | |
ss2iundv.sub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) | ||
ss2iundv.ss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) | ||
Assertion | ss2iundv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2iundv.el | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) | |
2 | ss2iundv.sub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) | |
3 | ss2iundv.ss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) | |
4 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
5 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
6 | nfcv | ⊢ Ⅎ 𝑦 𝑌 | |
7 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
8 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
9 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
10 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
11 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
12 | nfcv | ⊢ Ⅎ 𝑦 𝐺 | |
13 | 4 5 6 7 8 9 10 11 12 1 2 3 | ss2iundf | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |