Metamath Proof Explorer


Theorem ss2iundv

Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses ss2iundv.el ( ( 𝜑𝑥𝐴 ) → 𝑌𝐶 )
ss2iundv.sub ( ( 𝜑𝑥𝐴𝑦 = 𝑌 ) → 𝐷 = 𝐺 )
ss2iundv.ss ( ( 𝜑𝑥𝐴 ) → 𝐵𝐺 )
Assertion ss2iundv ( 𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷 )

Proof

Step Hyp Ref Expression
1 ss2iundv.el ( ( 𝜑𝑥𝐴 ) → 𝑌𝐶 )
2 ss2iundv.sub ( ( 𝜑𝑥𝐴𝑦 = 𝑌 ) → 𝐷 = 𝐺 )
3 ss2iundv.ss ( ( 𝜑𝑥𝐴 ) → 𝐵𝐺 )
4 nfv 𝑥 𝜑
5 nfv 𝑦 𝜑
6 nfcv 𝑦 𝑌
7 nfcv 𝑦 𝐴
8 nfcv 𝑦 𝐵
9 nfcv 𝑥 𝐶
10 nfcv 𝑦 𝐶
11 nfcv 𝑥 𝐷
12 nfcv 𝑦 𝐺
13 4 5 6 7 8 9 10 11 12 1 2 3 ss2iundf ( 𝜑 𝑥𝐴 𝐵 𝑦𝐶 𝐷 )