Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ss2iundv.el | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) | |
| ss2iundv.sub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) | ||
| ss2iundv.ss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) | ||
| Assertion | ss2iundv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2iundv.el | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ∈ 𝐶 ) | |
| 2 | ss2iundv.sub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) | |
| 3 | ss2iundv.ss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐺 ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝑌 | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝐶 | |
| 11 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
| 12 | nfcv | ⊢ Ⅎ 𝑦 𝐺 | |
| 13 | 4 5 6 7 8 9 10 11 12 1 2 3 | ss2iundf | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷 ) |