Description: Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ss2iundv.el | |- ( ( ph /\ x e. A ) -> Y e. C ) |
|
ss2iundv.sub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
||
ss2iundv.ss | |- ( ( ph /\ x e. A ) -> B C_ G ) |
||
Assertion | ss2iundv | |- ( ph -> U_ x e. A B C_ U_ y e. C D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2iundv.el | |- ( ( ph /\ x e. A ) -> Y e. C ) |
|
2 | ss2iundv.sub | |- ( ( ph /\ x e. A /\ y = Y ) -> D = G ) |
|
3 | ss2iundv.ss | |- ( ( ph /\ x e. A ) -> B C_ G ) |
|
4 | nfv | |- F/ x ph |
|
5 | nfv | |- F/ y ph |
|
6 | nfcv | |- F/_ y Y |
|
7 | nfcv | |- F/_ y A |
|
8 | nfcv | |- F/_ y B |
|
9 | nfcv | |- F/_ x C |
|
10 | nfcv | |- F/_ y C |
|
11 | nfcv | |- F/_ x D |
|
12 | nfcv | |- F/_ y G |
|
13 | 4 5 6 7 8 9 10 11 12 1 2 3 | ss2iundf | |- ( ph -> U_ x e. A B C_ U_ y e. C D ) |