| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 2 |
1
|
adantr |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> R e. _V ) |
| 3 |
|
oveq1 |
|- ( r = R -> ( r ^r k ) = ( R ^r k ) ) |
| 4 |
3
|
iuneq2d |
|- ( r = R -> U_ k e. NN ( r ^r k ) = U_ k e. NN ( R ^r k ) ) |
| 5 |
|
dftrcl3 |
|- t+ = ( r e. _V |-> U_ k e. NN ( r ^r k ) ) |
| 6 |
|
nnex |
|- NN e. _V |
| 7 |
|
ovex |
|- ( R ^r k ) e. _V |
| 8 |
6 7
|
iunex |
|- U_ k e. NN ( R ^r k ) e. _V |
| 9 |
4 5 8
|
fvmpt |
|- ( R e. _V -> ( t+ ` R ) = U_ k e. NN ( R ^r k ) ) |
| 10 |
9
|
imaeq1d |
|- ( R e. _V -> ( ( t+ ` R ) " A ) = ( U_ k e. NN ( R ^r k ) " A ) ) |
| 11 |
|
imaiun1 |
|- ( U_ k e. NN ( R ^r k ) " A ) = U_ k e. NN ( ( R ^r k ) " A ) |
| 12 |
10 11
|
eqtrdi |
|- ( R e. _V -> ( ( t+ ` R ) " A ) = U_ k e. NN ( ( R ^r k ) " A ) ) |
| 13 |
2 12
|
syl |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( t+ ` R ) " A ) = U_ k e. NN ( ( R ^r k ) " A ) ) |
| 14 |
|
oveq2 |
|- ( x = 1 -> ( R ^r x ) = ( R ^r 1 ) ) |
| 15 |
14
|
imaeq1d |
|- ( x = 1 -> ( ( R ^r x ) " A ) = ( ( R ^r 1 ) " A ) ) |
| 16 |
15
|
sseq1d |
|- ( x = 1 -> ( ( ( R ^r x ) " A ) C_ B <-> ( ( R ^r 1 ) " A ) C_ B ) ) |
| 17 |
16
|
imbi2d |
|- ( x = 1 -> ( ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r x ) " A ) C_ B ) <-> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r 1 ) " A ) C_ B ) ) ) |
| 18 |
|
oveq2 |
|- ( x = y -> ( R ^r x ) = ( R ^r y ) ) |
| 19 |
18
|
imaeq1d |
|- ( x = y -> ( ( R ^r x ) " A ) = ( ( R ^r y ) " A ) ) |
| 20 |
19
|
sseq1d |
|- ( x = y -> ( ( ( R ^r x ) " A ) C_ B <-> ( ( R ^r y ) " A ) C_ B ) ) |
| 21 |
20
|
imbi2d |
|- ( x = y -> ( ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r x ) " A ) C_ B ) <-> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r y ) " A ) C_ B ) ) ) |
| 22 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( R ^r x ) = ( R ^r ( y + 1 ) ) ) |
| 23 |
22
|
imaeq1d |
|- ( x = ( y + 1 ) -> ( ( R ^r x ) " A ) = ( ( R ^r ( y + 1 ) ) " A ) ) |
| 24 |
23
|
sseq1d |
|- ( x = ( y + 1 ) -> ( ( ( R ^r x ) " A ) C_ B <-> ( ( R ^r ( y + 1 ) ) " A ) C_ B ) ) |
| 25 |
24
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r x ) " A ) C_ B ) <-> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r ( y + 1 ) ) " A ) C_ B ) ) ) |
| 26 |
|
oveq2 |
|- ( x = k -> ( R ^r x ) = ( R ^r k ) ) |
| 27 |
26
|
imaeq1d |
|- ( x = k -> ( ( R ^r x ) " A ) = ( ( R ^r k ) " A ) ) |
| 28 |
27
|
sseq1d |
|- ( x = k -> ( ( ( R ^r x ) " A ) C_ B <-> ( ( R ^r k ) " A ) C_ B ) ) |
| 29 |
28
|
imbi2d |
|- ( x = k -> ( ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r x ) " A ) C_ B ) <-> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r k ) " A ) C_ B ) ) ) |
| 30 |
|
relexp1g |
|- ( R e. V -> ( R ^r 1 ) = R ) |
| 31 |
30
|
imaeq1d |
|- ( R e. V -> ( ( R ^r 1 ) " A ) = ( R " A ) ) |
| 32 |
31
|
adantr |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r 1 ) " A ) = ( R " A ) ) |
| 33 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 34 |
|
imass2 |
|- ( A C_ ( A u. B ) -> ( R " A ) C_ ( R " ( A u. B ) ) ) |
| 35 |
33 34
|
mp1i |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( R " A ) C_ ( R " ( A u. B ) ) ) |
| 36 |
|
simpr |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( R " ( A u. B ) ) C_ B ) |
| 37 |
35 36
|
sstrd |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( R " A ) C_ B ) |
| 38 |
32 37
|
eqsstrd |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r 1 ) " A ) C_ B ) |
| 39 |
|
simp2l |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> R e. V ) |
| 40 |
|
simp1 |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> y e. NN ) |
| 41 |
|
relexpsucnnl |
|- ( ( R e. V /\ y e. NN ) -> ( R ^r ( y + 1 ) ) = ( R o. ( R ^r y ) ) ) |
| 42 |
41
|
imaeq1d |
|- ( ( R e. V /\ y e. NN ) -> ( ( R ^r ( y + 1 ) ) " A ) = ( ( R o. ( R ^r y ) ) " A ) ) |
| 43 |
|
imaco |
|- ( ( R o. ( R ^r y ) ) " A ) = ( R " ( ( R ^r y ) " A ) ) |
| 44 |
42 43
|
eqtrdi |
|- ( ( R e. V /\ y e. NN ) -> ( ( R ^r ( y + 1 ) ) " A ) = ( R " ( ( R ^r y ) " A ) ) ) |
| 45 |
39 40 44
|
syl2anc |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( ( R ^r ( y + 1 ) ) " A ) = ( R " ( ( R ^r y ) " A ) ) ) |
| 46 |
|
imass2 |
|- ( ( ( R ^r y ) " A ) C_ B -> ( R " ( ( R ^r y ) " A ) ) C_ ( R " B ) ) |
| 47 |
46
|
3ad2ant3 |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( R " ( ( R ^r y ) " A ) ) C_ ( R " B ) ) |
| 48 |
|
ssun2 |
|- B C_ ( A u. B ) |
| 49 |
|
imass2 |
|- ( B C_ ( A u. B ) -> ( R " B ) C_ ( R " ( A u. B ) ) ) |
| 50 |
48 49
|
mp1i |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( R " B ) C_ ( R " ( A u. B ) ) ) |
| 51 |
|
simp2r |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( R " ( A u. B ) ) C_ B ) |
| 52 |
50 51
|
sstrd |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( R " B ) C_ B ) |
| 53 |
47 52
|
sstrd |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( R " ( ( R ^r y ) " A ) ) C_ B ) |
| 54 |
45 53
|
eqsstrd |
|- ( ( y e. NN /\ ( R e. V /\ ( R " ( A u. B ) ) C_ B ) /\ ( ( R ^r y ) " A ) C_ B ) -> ( ( R ^r ( y + 1 ) ) " A ) C_ B ) |
| 55 |
54
|
3exp |
|- ( y e. NN -> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( ( R ^r y ) " A ) C_ B -> ( ( R ^r ( y + 1 ) ) " A ) C_ B ) ) ) |
| 56 |
55
|
a2d |
|- ( y e. NN -> ( ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r y ) " A ) C_ B ) -> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r ( y + 1 ) ) " A ) C_ B ) ) ) |
| 57 |
17 21 25 29 38 56
|
nnind |
|- ( k e. NN -> ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( R ^r k ) " A ) C_ B ) ) |
| 58 |
57
|
com12 |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( k e. NN -> ( ( R ^r k ) " A ) C_ B ) ) |
| 59 |
58
|
ralrimiv |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> A. k e. NN ( ( R ^r k ) " A ) C_ B ) |
| 60 |
|
iunss |
|- ( U_ k e. NN ( ( R ^r k ) " A ) C_ B <-> A. k e. NN ( ( R ^r k ) " A ) C_ B ) |
| 61 |
59 60
|
sylibr |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> U_ k e. NN ( ( R ^r k ) " A ) C_ B ) |
| 62 |
13 61
|
eqsstrd |
|- ( ( R e. V /\ ( R " ( A u. B ) ) C_ B ) -> ( ( t+ ` R ) " A ) C_ B ) |