Metamath Proof Explorer


Theorem cortrcltrcl

Description: Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrcltrcl
|- ( t* o. t+ ) = t*

Proof

Step Hyp Ref Expression
1 corcltrcl
 |-  ( r* o. t+ ) = t*
2 1 eqcomi
 |-  t* = ( r* o. t+ )
3 2 coeq1i
 |-  ( t* o. t+ ) = ( ( r* o. t+ ) o. t+ )
4 coass
 |-  ( ( r* o. t+ ) o. t+ ) = ( r* o. ( t+ o. t+ ) )
5 cotrcltrcl
 |-  ( t+ o. t+ ) = t+
6 5 coeq2i
 |-  ( r* o. ( t+ o. t+ ) ) = ( r* o. t+ )
7 6 1 eqtri
 |-  ( r* o. ( t+ o. t+ ) ) = t*
8 4 7 eqtri
 |-  ( ( r* o. t+ ) o. t+ ) = t*
9 3 8 eqtri
 |-  ( t* o. t+ ) = t*