Metamath Proof Explorer


Theorem coscld

Description: Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis sincld.1
|- ( ph -> A e. CC )
Assertion coscld
|- ( ph -> ( cos ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 sincld.1
 |-  ( ph -> A e. CC )
2 coscl
 |-  ( A e. CC -> ( cos ` A ) e. CC )
3 1 2 syl
 |-  ( ph -> ( cos ` A ) e. CC )