Metamath Proof Explorer


Theorem tancld

Description: Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses sincld.1
|- ( ph -> A e. CC )
tancld.2
|- ( ph -> ( cos ` A ) =/= 0 )
Assertion tancld
|- ( ph -> ( tan ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 sincld.1
 |-  ( ph -> A e. CC )
2 tancld.2
 |-  ( ph -> ( cos ` A ) =/= 0 )
3 tancl
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC )
4 1 2 3 syl2anc
 |-  ( ph -> ( tan ` A ) e. CC )