| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-cos | 
							 |-  cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ax-icn | 
							 |-  _i e. CC  | 
						
						
							| 3 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpan | 
							 |-  ( x e. CC -> ( _i x. x ) e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							efcl | 
							 |-  ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( x e. CC -> ( exp ` ( _i x. x ) ) e. CC )  | 
						
						
							| 7 | 
							
								
							 | 
							negicn | 
							 |-  -u _i e. CC  | 
						
						
							| 8 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i x. x ) e. CC )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpan | 
							 |-  ( x e. CC -> ( -u _i x. x ) e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							efcl | 
							 |-  ( ( -u _i x. x ) e. CC -> ( exp ` ( -u _i x. x ) ) e. CC )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( x e. CC -> ( exp ` ( -u _i x. x ) ) e. CC )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							addcld | 
							 |-  ( x e. CC -> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) e. CC )  | 
						
						
							| 13 | 
							
								12
							 | 
							halfcld | 
							 |-  ( x e. CC -> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) e. CC )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							fmpti | 
							 |-  cos : CC --> CC  |