Metamath Proof Explorer


Theorem cosmul

Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)

Ref Expression
Assertion cosmul
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) )

Proof

Step Hyp Ref Expression
1 coscl
 |-  ( A e. CC -> ( cos ` A ) e. CC )
2 coscl
 |-  ( B e. CC -> ( cos ` B ) e. CC )
3 mulcl
 |-  ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC )
4 1 2 3 syl2an
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC )
5 2cnne0
 |-  ( 2 e. CC /\ 2 =/= 0 )
6 3anass
 |-  ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) <-> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) )
7 4 5 6 sylanblrc
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) )
8 divcan3
 |-  ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) )
9 7 8 syl
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) )
10 sincl
 |-  ( A e. CC -> ( sin ` A ) e. CC )
11 sincl
 |-  ( B e. CC -> ( sin ` B ) e. CC )
12 mulcl
 |-  ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC )
13 10 11 12 syl2an
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC )
14 4 13 4 ppncand
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) )
15 cossub
 |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) )
16 cosadd
 |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) )
17 15 16 oveq12d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) )
18 4 2timesd
 |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) )
19 14 17 18 3eqtr4rd
 |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) )
20 19 oveq1d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) )
21 9 20 eqtr3d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) )